Rapid Diagnostic Tests for Bacterial Meningitis Pathogens: where we are now and what’s next.

Xin Wang
Chief, Bacterial Meningitis Laboratory
Director WHO Collaborating Center for Meningitis
MVPDB/DBD/NCIRD/CDC

Meningitis Research Foundation Conference
Nov 1-3, 2021
I have no conflict of interest in relation to this presentation

The findings and conclusions in this presentation are those of the authors and do not necessarily represent the official position of the U.S. Centers for Disease Control and Prevention (CDC).

The U.S. CDC does not endorse, recommend or make representations with respect to the products and manufactures in this presentation
Rapid Diagnostics for Meningitis

- Meningitis is a life-threatening disease
- Rapid detection of meningitis pathogens is critical for case management, outbreak response, and surveillance
- Poor accessibility of diagnostics remains to be addressed, especially in resource limited countries
 - insufficient funding
 - limitations of existing diagnostic tests
 - lack of trained staff members
 - low priority
 - Ineffective supply chain management
- Despite advances in diagnostic technology, an empirical antimicrobial treatment provided, rather than a treatment based on pathogen identification
Diagnostics: a Key Component in the Global Road Map to Defeat Meningitis by 2030

Pillar 2 Diagnosis and treatment
Achieved through improve diagnosis at all levels of health care, health worker training and prompt and effective case management

• Strategic goal 6: Improve diagnosis of meningitis at all levels of care
• Strategic goal 7: Develop and facilitate access to diagnostic assays at all levels of care to increase confirmation of meningitis
Three Use Cases To Improve Global Meningitis Detection

Use case 1 (Epidemic/outbreak settings, Africa)
• Identification of Nm serogroup at peripheral level (health center or district hospital) for appropriate vaccine response

Use case 2 (Epidemic and endemic settings, worldwide)
• Identification of bacterial meningitis/septicemia at peripheral level (health clinic or hospital) to initiate antibiotic treatment for case management

Use case 3 (Epidemic and endemic settings, worldwide)
• Identification of causative pathogens from syndromic meningitis panels (minimum 10 pathogens) at hospital level (district/regional hospital) for case management: stopping or changing antibiotics

https://www.who.int/emergencies/diseases/meningitis/meningitis-diagnostics-use-cases.pdf
Timelines for use case 3 development

May 2017: A call for action: global vision to defeat meningitis

March 2018: Expert group meeting to discuss development of next generation RDTs (use cases 1-3)

2019-20: Use case 3 TPP finalized

2020-21: Use case 3 landscape and Market analysis by PATH

2021: Identification of potential platforms for use case 3

2022-24: Development and validation of potential RDTs

2025-28: Pilot studies and RDT roll-out
Partnership and collaborations to accelerate use case 3 development

Develop and finalize use case 3 Target Product Profile (TPP)

Conduct landscape analysis of meningitis diagnostics
Use case 3
TPP

Scope
- Identify the causative meningitis pathogens
- Used in hospital or hospital laboratories
- Performed by trained clinical staff and lab technicians
- Inform appropriate treatment intervention

Specific features
- Multiplex technology allows detection of a wide spectrum of pathogens
- High performance (sensitivity, specificity, reproducibility, etc)
- Rapid and easy result interpretation
- Ideally, a portable and battery-operated device
- Easy to deploy and use
- Affordable

Meningitis pathogen panel
- Categories A, B and C
- Bacterial, Viral, Fungal, and Parasitic
Landscape analysis of meningitis diagnostics

Objectives
• Identify diagnostic gaps and obtain key stakeholders’ feedback on existing and pipeline technologies
• Review the diagnostic platforms and technologies currently available or under development with the potential for Use Case 3.
• Assess existing and emerging technologies, including their quality, cost, and relevance to Use Case 3

Methods
• Stakeholder interviews
• Literature review

Major Findings
• Existing Tests/platforms
• Potential platforms
• Advanced/Emerging technologies
Existing Tests and Limitations

<table>
<thead>
<tr>
<th>Culture</th>
<th>Latex Agglutination Tests</th>
<th>Immunochromatographic tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Specific species identification</td>
<td>• Target various meningitis pathogens and some meningococcal</td>
<td>• Sp and all meningococcal serogroups except B</td>
</tr>
<tr>
<td>• In-depth strain characterization</td>
<td>serogroups</td>
<td>• Rapid (<15 mins)</td>
</tr>
<tr>
<td>• Serogrouping/typing</td>
<td>• Rapid (< 20 mins)</td>
<td>• Cassette format expensive</td>
</tr>
<tr>
<td>• Antibiotic resistance</td>
<td>• High cost</td>
<td>• Cold chain for storage/distribution</td>
</tr>
<tr>
<td>• Molecular typing</td>
<td>• Cold chain for storage/distribution</td>
<td>• High sensitivity and specificity for specific targets</td>
</tr>
<tr>
<td>• Low cost</td>
<td>• Performance may vary</td>
<td></td>
</tr>
<tr>
<td>• Long turnaround</td>
<td>• lab verification: 33-100% sensitivity; 93-100% specificity</td>
<td></td>
</tr>
<tr>
<td>• Low recovery rates</td>
<td>• field evaluation: 69-80% sensitivity; 81-94% specificity</td>
<td></td>
</tr>
<tr>
<td>• Antibiotic use prior to specimen collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Improper storage & transport conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Suboptimal media quality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Existing Tests and Limitations: PCR-based Tests

- Quick turnaround (within several hours)
- Sensitive/specific for targets
- High throughput
- Multiple platforms available-commercial and lab developed tests (LDTs)
- LDTs implemented in many countries with External Quality Assurance in place

- High cost (expensive equipment)
- Require cold chain for key reagents
- Require technical trainings and lab infrastructure (freezer, fridge, separate rooms etc)
- Decentralization to regional/district levels is challenging in resource limited regions
PCR tests for meningitis pathogens

<table>
<thead>
<tr>
<th>Test</th>
<th>Platform</th>
<th>Targets</th>
<th>Specimen Type</th>
<th>Sen/Spec</th>
<th>Instrument/Cost</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioFire Film Array</td>
<td>Multiplex</td>
<td>Bacterial/viral/fungal meningitis pathogens</td>
<td>CSF</td>
<td>>90%</td>
<td>Biofire FilmArray Systems/High ($45K for 2.0)</td>
<td>~1 hr</td>
</tr>
<tr>
<td>Xpert® EV</td>
<td>Multiplex</td>
<td>Enteroviral meningitis pathogens</td>
<td>CSF</td>
<td>>95%</td>
<td>Genexpert system/Medium-High ($11K-64K)</td>
<td><2.5 hrs</td>
</tr>
<tr>
<td>QIAstat-Dx</td>
<td>Multiplex</td>
<td>Bacterial/viral/fungal meningitis pathogens</td>
<td>CSF</td>
<td>NA</td>
<td>QIAStart-Dx analyzer/Medium (~$25K)</td>
<td>~1 hr</td>
</tr>
<tr>
<td>HG Meningococcus/ Sp (Ireland)</td>
<td>LAMP</td>
<td>Nm Serogroups (A, B, C, E, W, X, Y, and Z)/Sp serotypes</td>
<td>Blood, CSF, Swab, Direct CSF</td>
<td>NA</td>
<td>LAMP instrument/$9.7 (main or battery power)</td>
<td><1 hr</td>
</tr>
<tr>
<td>Lab Developed Tests</td>
<td>Direct PCR, triplex</td>
<td>Bacterial meningitis pathogens and capsule types</td>
<td>CSF, serum</td>
<td>>95%</td>
<td>ABI, AriaMx (>25K)</td>
<td>~ 2 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Platform</th>
<th>Targets</th>
<th>Specimen</th>
<th>Sen/Spec</th>
<th>Instrument/Cost</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioFire Film Array</td>
<td>Multiplex</td>
<td>Bacterial/viral/fungal meningitis pathogens</td>
<td>CSF</td>
<td>>90%</td>
<td>Biofire FilmArray Systems/High ($45K for 2.0)</td>
<td>~1 hr</td>
</tr>
<tr>
<td>Xpert® EV</td>
<td>Multiplex</td>
<td>Enteroviral meningitis pathogens</td>
<td>CSF</td>
<td>>95%</td>
<td>Genexpert system/Medium-High ($11K-64K)</td>
<td><2.5 hrs</td>
</tr>
<tr>
<td>QIAstat-Dx</td>
<td>Multiplex</td>
<td>Bacterial/viral/fungal meningitis pathogens</td>
<td>CSF</td>
<td>NA</td>
<td>QIAStart-Dx analyzer/Medium (~$25K)</td>
<td>~1 hr</td>
</tr>
<tr>
<td>HG</td>
<td>LAMP</td>
<td>Nm Serogroups (A, B, C, E, W, X, Y, and Z)/Sp serotypes</td>
<td>Blood, CSF, Swab, Direct CSF</td>
<td>NA</td>
<td>LAMP instrument/$9.7 (main or battery power)</td>
<td><1 hr</td>
</tr>
<tr>
<td>Lab Developed Tests</td>
<td>Direct PCR, triplex</td>
<td>Bacterial meningitis pathogens and capsule types</td>
<td>CSF, serum</td>
<td>>95%</td>
<td>ABI, AriaMx (>25K)</td>
<td>~ 2 hrs</td>
</tr>
</tbody>
</table>
Potential diagnostic platforms (for other pathogens)

<table>
<thead>
<tr>
<th>Platform</th>
<th>Feature</th>
<th>Run Time</th>
<th>Power</th>
<th>Instrument cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-POC</td>
<td>Multiplex, up to 40 targets</td>
<td>< 30 mins</td>
<td>Main/battery power</td>
<td>$28K</td>
</tr>
<tr>
<td>Anitoa Maverick compack qPCR</td>
<td>Multiplex, up to 4 targets</td>
<td>~30 mins</td>
<td>Main/battery power</td>
<td>~3.5K-6K</td>
</tr>
<tr>
<td>VERI-Q PCR</td>
<td>Multiplex, up to 10 targets</td>
<td>< 1 hr</td>
<td>Main power</td>
<td>~10K</td>
</tr>
</tbody>
</table>
Advanced diagnostic platforms

• Growing interest in next generation sequencing in past 10 years
• Used for detection of various pathogens (bacterial, viral etc)
• Various platforms (MinION, Illumin supported platforms, Ion Torrent, BGISEQ etc) and analysis tools available
• Higher cost and lower sensitive compared to PCR-based tests
• Targeted approaches offer better sensitivity, reduced cost, and decreased complexity of bioinformatic analysis
CRISPR/Cas system: an emerging technology for diagnostics

- Isothermal amplification technology, relying on Cas protein, an endonuclease that cleave complementary sequences
- Cleavage induces nonspecific cleavage of single stranded DNA or RNA, which can be modified with reporter/quencher, allowing signal detection
- Applied to viral pathogen detection

Next-generation diagnostics with CRISPR | Science (sciencemag.org)
Future Diagnostics for Meningitis

Existing platforms for meningitis pathogens
- Most Category A pathogens
- High sensitivity and specificity
- Expensive

Platforms with the potential for Use Case 3
- Not developed for meningitis pathogens
- Meet many features outline in Use Case 3 TPP
- Lower cost

Advanced and emerging technologies for Use Case 3
- Sequencing or CRISPR/Cas based
- Early development for diagnostics
What’s next?

1. Assess various platforms—existing/potential and estimate market size
 - Identify suitable platforms for validation
 - Develop and validate tests for meningitis pathogens
 - Estimate market size for meningitis diagnostics

2. Pilot studies to inform global deployment strategies
 - Evaluate RDT field performance and lab capacity at local levels in selected countries
 - Assess LP rate, supply chain/specimen transport systems, and data reporting

3. Develop region/country-specific rollout strategies
 - Country’s risk level for meningitis and prevalence of pathogens
 - Impact on surveillance, testing algorithm, data flow etc
 - Shift in the roles of laboratory at national/subnational levels
 - Procurement process/trainings
Conclusion

- RDTs are important for rapid meningitis detection at local hospitals and laboratories; culture remains important for AMR and genomic surveillance
- Strong partnership and innovations in technology and informatics accelerate the development of next generation rapid tests
- Deployment of new RDTs requires engagement of multi-stakeholders and may lead to a paradigm shift in the roles of clinical and public health laboratories
- Partner/country’s commitment and investment ensures sustained access to RDTs
Acknowledgement

• Katya Fernandez and Olivier Ronveaux, WHO
• Use case 3 expert group (China CDC, FIND, PATH, IPP, MSF, NICD S. Africa, NIPH, ULC, Uni. Of Liverpool, US CDC, and WHO HQ)
• PATH landscape analysis team
• Meningococcal Working Group (GAVI, Bill and Melinda Gates Foundation, UNICEF, WHO and CDC)
• CDC Meningitis and Vaccine Preventable Disease Branch (lab/epi members)
Thank you for your attention