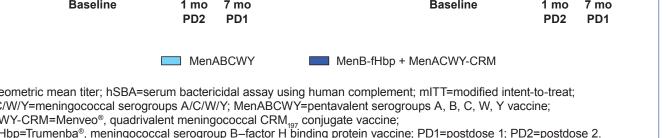
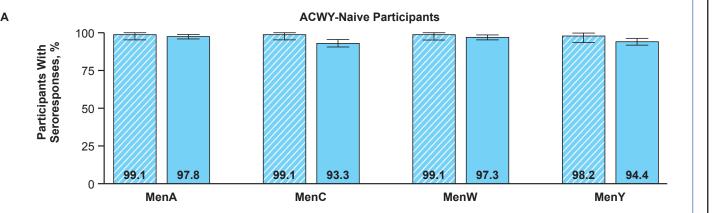
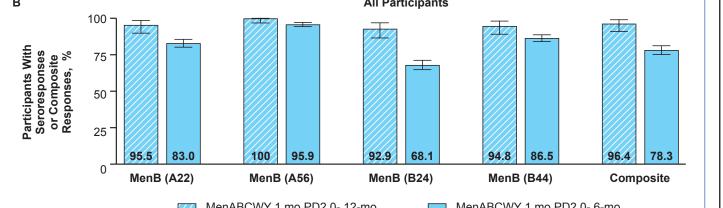
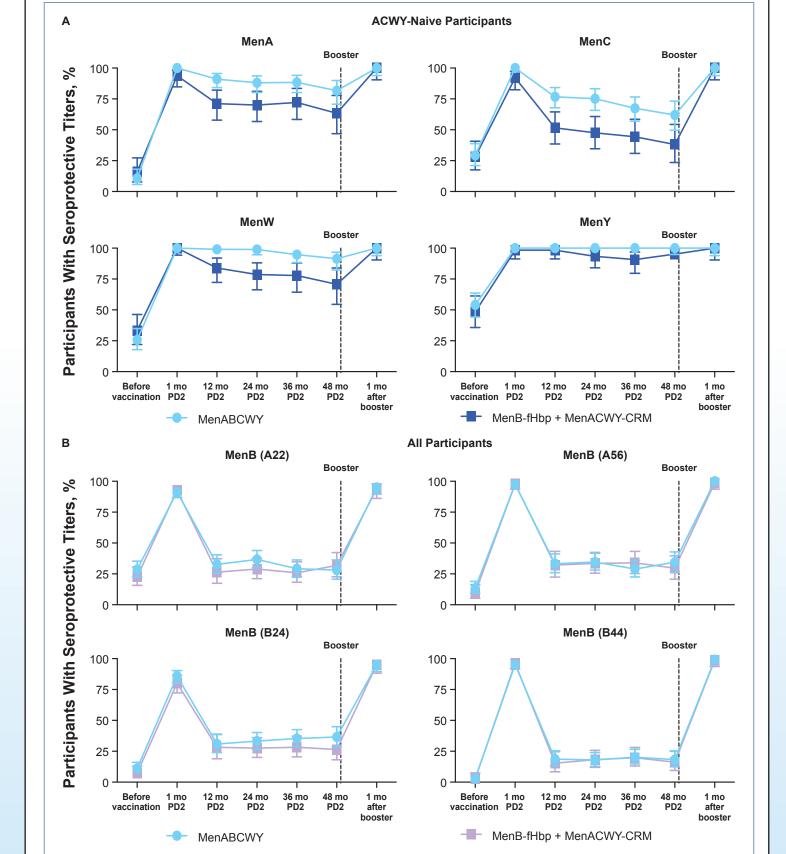

Rationale for a Pentavalent Meningococcal Serogroup ABCWY Vaccine: a Review of Epidemiologic and Clinical Data

Jason D. Maguire, MD,¹ Lefteris Zolotas, MD,² Beth Moughan, MD,¹ Paula Peyrani, MD,³ Paul Balmer, PhD,³ Jamie Findlow, PhD,⁴ William C. Gruber, MD,⁵ Annaliesa S. Anderson, PhD,⁵ Johannes Beeslaar, MD²

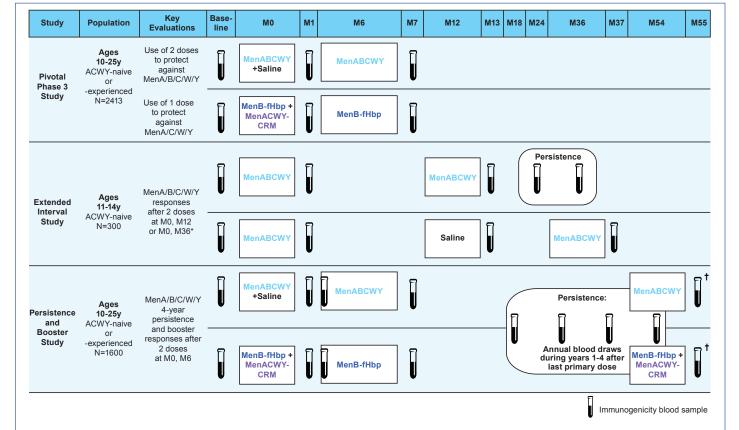

¹Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA; ²Vaccine Research and Development, Pfizer Ltd, Hurley, UK; ³Vaccines/Antivirals and Evidence Generation, Pfizer Inc, Collegeville, PA, USA; ¹ ⁴Vaccines/Antivirals and Evidence Generation, Pfizer Ltd, Tadworth, UK; ⁵Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA




- hSBA geometric mean titers (GMTs)
- Noninferiority hypothesis testing was based on differences in seroresponse and composite response rates between MenABCWY and comparators, and used a -10% noninferiority margin (ie, lower limit of 2-sided 95% CI for differences >-10%)
- Safety evaluations included percentages of participants reporting Solicited local reactions and systemic events after each vaccination



- (Figure 6) and -naive (not shown) participants
- MenB
 - MenB seroresponse and composite response rates noninferior to those after 2 MenB-fHbp doses (Figure 5B)
 - Seroresponse rates for strains expressing factor H binding protein (fHbp) variants B24 and B44 and composite response rates statistically greater -83.4%-98.7% of MenABCWY recipients had seroprotective MenB titers

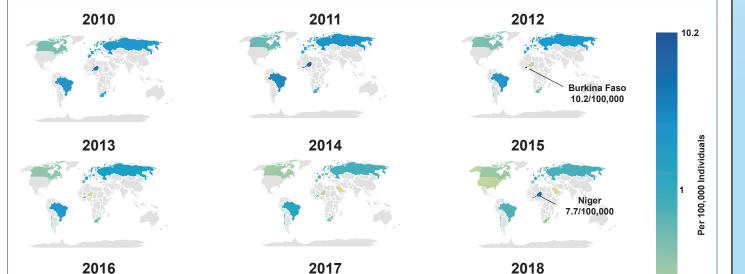


MenABCWY=pentavalent serogroups A, B, C, W, Y vaccine; MenACWY-CRM=Menveo®, quadrivalent meningococcal CRM conjugate vaccine; MenB-fHbp=Trumenba®, meningococcal serogroup B-factor H binding protein vaccine. *Local reactions evaluated for MenABCWY or MenB-fHbp injection site only.

CONCLUSIONS

- Unsolicited non-serious adverse events (AEs), serious AEs, medically attended AEs, immediate AEs, and newly diagnosed chronic medical conditions

Figure 1. MenABCWY Clinical Program Overview



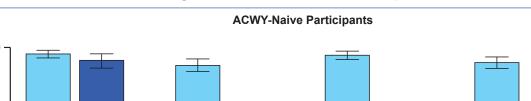
ieningococcal serogroups A/C/W/Y; M=month; MenA/B/C/W/Y=meningococcal serogroups A/B/C/W/Y; MenABCWY=pentavalent serogroups A, B, C, W, Y vaccine; MenACWY-CRM=Menveo®, quadrivalent meningococcal CRM, conjugate vaccine; MenB-fHbp=Trumenba®, meningococcal serogroup B-factor H binding protein vaccine. *Study is ongoing; only findings from 2 doses at M0, M12 are presented. [†]Safety follow-up continued through M60

RESULTS

Review of Global IMD Epidemiology

 Overall IMD incidence during 2010–2018 was low and generally decreased over time, with pronounced occurrence of sporadic outbreaks (Figure 2)¹ Figure 2. Overall IMD Incidence During 2010–2018¹

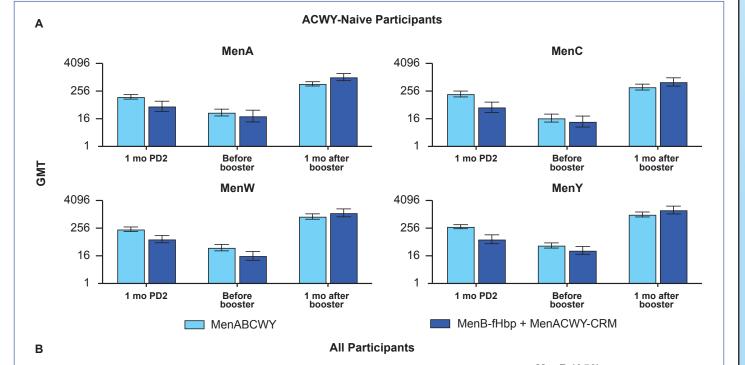
A 2-dose MenABCWY primary series administered at Months 0 and 6 induces robust immune response against all 5 serogroups that are comparable with or statistically greater than those induced by separate administration of MenACWY-CRM and MenB-fHbp


Immune responses for all 5 serogroups after 2 MenABCWY doses administered at Months 0 and 12 (extended interval study)

- MenA/C/W/Y seroresponse rates after 2 MenABCWY doses following 0-,12-month schedule were consistent with those following 0-,6-month schedule in pivotal phase 3 study (Figure 7A)
- For MenB, seroresponse and composite response rates following 0-,12-month schedule trended higher than those following 0-,6-month schedule (Figure 7B) Extension of the MenABCWY primary series dosing interval from 6 to 12 months results in similar or higher immune responses for each of the 5 serogroups, indicating flexibility in the MenABCWY primary dosing interval

Persistence of immune responses for all 5 serogroups after 2 MenABCWY doses administered at Months 0 and 6 and immune responses to a booster dose (persistence and booster study)

- Through 48 months after dose 2 of MenABCWY 0-,6-month primary series
- MenA/C/W/Y seroprotection rates remained high (Figure 8A)
- MenB seroprotection rates generally remained higher than at baseline (Figure 8B)
- After booster dose administered 48 months after primary series - Seroprotection achieved by all participants for MenA/C/W/Y (Figure 8A) - Seroprotection rates for MenB higher than after primary series (Figure 8B) - For all 5 serogroups, GMTs after booster dose generally higher than those after primary series, indicating anamnestic responses (Figure 9) Immune responses after 2 MenABCWY doses administered at 0 and 6 months may provide improved protection over 4 years compared with
- a single MenACWY-CRM dose and are boostable for all 5 serogroups Figure 5. Percentages of Participants With (A) MenA/C/W/Y hSBA

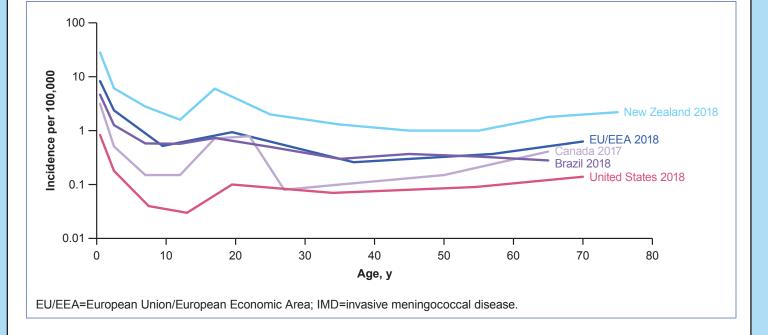

Seroresponses After 2 Doses of MenABCWY vs 1 Dose of MenACWY-CRM and (B) MenB* hSBA Seroresponses or Composite Responses After 2 Doses of MenABCWY vs 2 Doses of MenB-fHbp (Pivotal Phase 3 Study; 0-,6-Month Schedule)

Hbp=factor H binding protein; hSBA=serum bactericidal assay using human complement; MenA/C/W/Y=meningococcal serogroups A/C/W/Y; MenABCWY=pentavalent serogroups A, B, C, W, Y vaccine; MenACWY-CRM=Menveo[®], guadrivalent neningococcal CRM, az conjugate vaccine; MenB=meningococcal serogroup B; MenB-fHbp=Trumenba®, meningococcal serogroup 3–factor H binding protein vaccine; mITT=modified intent-to-treat; PD2=postdose 2. Error bars represent 95% Cls. Data for all prebooster time points used stage 2 mITT population; data for 1 month after booster used booster-evaluable immunogenicity population

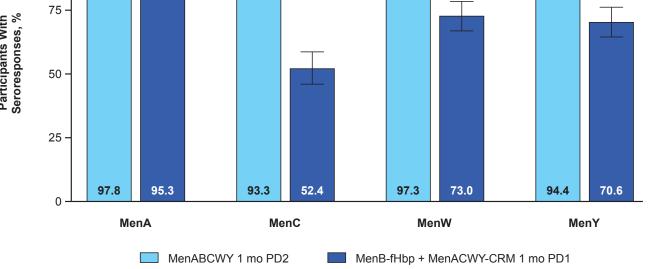
*MenB strains indicated by vaccine-heterologous fHbp variants they express

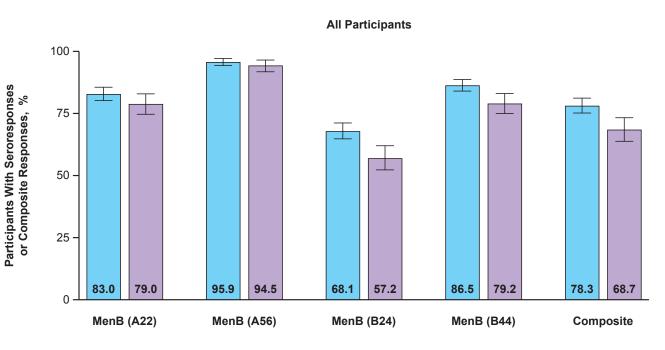
Figure 9. hSBA GMTs Against (A) MenA/C/W/Y Strains and (B) MenB* **Strains After Primary Vaccination and Before and After Booster** (Persistence and Booster Study)

- IMD epidemiology remains unpredictable with respect to predominant disease-causing serogroups and the occurrence of sporadic cases and outbreaks.¹
- Comprehensive protection against IMD thus requires vaccination against serogroups A, B, C, W, and Y, which collectively cause nearly all IMD.^{1,2}
- Clinical data indicate that MenABCWY is safe, well tolerated, and highly immunogenic among adolescents and young adults.
- Results support use of a 2-dose MenABCWY primary series for both ACWY-naive and -experienced individuals in this age group.
- A single MenABCWY dose may provide comparable protection to existing MenACWY vaccines.
- Data also support the flexibility to extend the interval between the MenABCWY primary doses.
- Use of 2 primary doses may provide improved protection over several years compared with a single MenACWY dose.
- Antibody-mediated protection is boostable for all 5 serogroups.
- MenABCWY could help address challenges in evolving IMD epidemiology and existing vaccination schedules by providing adolescents and young adults with comprehensive, boostable protection using a single vaccine.

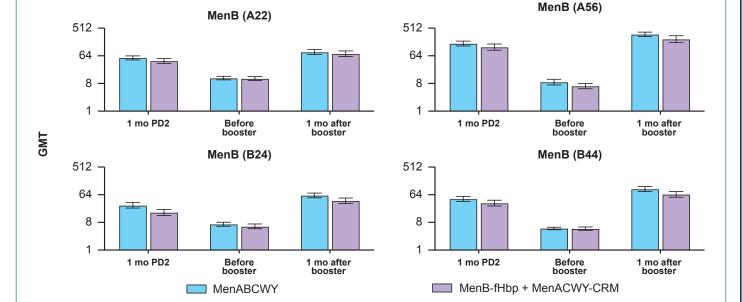

References

- 1. Pardo de Santayana C, et al. Epidemiol Infect. 2023;151:e57.
- 2. Pizza M, et al. Microorganisms. 2020;8(10):1521.
- 3. US Centers for Disease Control and Prevention. Recommended child and adolescent immunization schedule for ages 18 years or younger. Available at: https://www.cdc.gov/ vaccines/schedules/downloads/child/0-18yrs-child-combined-schedule.pdf. Accessed July 26, 2023.
- 4. Marshall GS, et al. Infect Dis Ther. 2022;11(3):937-951.




IMD=invasive meningococcal disease; N/A=not available

 IMD incidence highest in infants, followed by young children (Figure 3)¹ - Secondary peak in adolescents/young adults in many countries - Increased incidence among older adults in some countries Figure 3. IMD Incidence by Age Group During 2017–2018^{1,10}


 Serogroups A, B, C, W, Y caused vast majority of IMD¹ – Serogroup B dominated in many regions - Increases in serogroups W and Y in some regions - Defined serogroup peaks associated with outbreaks in some African countries Serogroup X localized to African meningitis belt other than sporadic cases

MenABCWY 1 mo PD2 MenB-fHbp + MenACWY-CRM 1 mo PD2

Hbp=factor H binding protein: hSBA=serum bactericidal assay using human complement: MenA/C/W/Y=meningococcal serogroups A/C/W/Y; MenABCWY=pentavalent serogroups A, B, C, W, Y vaccine; MenACWY-CRM=Menveo®, quadrivalent neningococcal CRM₁₀₇ conjugate vaccine; MenB=meningococcal serogroup B; MenB-fHbp=Trumenba®, meningococcal serogroup B-factor H binding protein vaccine; PD1=postdose 1; PD2=postdose 2. Error bars represent 95% CIs. MenB strains indicated by vaccine-heterologous fHbp variants they express

Hbp=factor H binding protein; GMT=geometric mean titer; hSBA=serum bactericidal assay using human complement; MenA/C/W/Y=meningococcal serogroups A/C/W/Y; MenABCWY=pentavalent serogroups A, B, C, W, Y vaccine; MenACWY-CRM=Menveo[®], quadrivalent meningococcal CRM₁₀₇ conjugate vaccine; MenB=meningococcal serogroup B; MenB-fHbp=Trumenba®, meningococcal serogroup B-factor H binding protein vaccine; PD2=postdose 2. Error bars represent 95% Cls. *MenB strains indicated by vaccine-heterologous fHbp variants they express.

MenABCWY safety and tolerability

 MenABCWY reactogenicity profile consistent with that of MenB-fHbp, with trend toward increased rates of local reactions for MenABCWY that was not clinically meaningful (Figure 10)

- Reactogenic events mostly mild or moderate in severity

– No clinically meaningful differences between doses 1 and 2

- No clinically meaningful differences between ACWY-naive and ACWYexperienced participants
- Reactogenicity profile after booster dose generally consistent with that after primary series
- No MenABCWY recipients withdrew because of reactogenicity events or related AEs
- MenABCWY was well tolerated and no safety concerns were identified

- 5. Trumenba® (meningococcal group B vaccine). Full prescribing information. Available at: https://www.fda.gov/media/89936/download. Accessed June 23, 2023.
- 6. Trumenba[®] (meningococcal group B vaccine). Summary of product characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/trumenbaepar-product-information en.pdf. Accessed June 23, 2023.
- 7. Nimenrix[®] (meningococcal groups A, C, W-135 and Y conjugate vaccine). Summary of product characteristics. Available at: https://www.ema.europa.eu/en/documents/productinformation/nimenrix-epar-product-information_en.pdf. Accessed June 23, 2023.
- 8. Findlow J, et al. Expert Rev Vaccines. 2022;21(6):753-769.

9. Borrow R, et al. Vaccine. 2005;23(17-18):2222-2227.

10. European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases: Invasive meningococcal disease. Available at: https://atlas.ecdc.europa.eu/ public/index.aspx?Dataset=27&HealthTopic=36. Accessed August 8, 2023.

Funding and Acknowledgments

This study was sponsored by Pfizer Inc. Medical writing support was provided by Judith Kandel, PhD of ICON (Blue Bell, PA, USA) and was funded by Pfizer Inc.

Disclosures

All authors are current employees of Pfizer and may hold stock or stock options.

For more information please contact Lefteris Zolotas Vaccine Research and Development Pfizer Ltd, Hurley, UK Email: Lefteris.zolotas@pfizer.com

Presented at Meningitis Research Foundation Conference (MRF 2023); London, UK; November 7–8, 2023