Identification of *Neisseria meningitidis* specific patient derived antibodies using reverse vaccinology 2.0

Millie Gladstone
Imperial College London
Department of Infectious Disease
Neisseria meningitidis

- The most common cause of bacterial meningitis and septicaemia in the UK
- 10% of infections are fatal
- 25% of survivors have long term effects
- Six serogroups cause the majority of disease – A, B, C, W, X and Y
 - Recently MenB has been the dominant serogroup in the UK

Current vaccines

- Conjugate vaccines against *N. meningitidis* serogroups A, C, W and Y
- Recombinant protein vaccine against serogroup B
 - Strain coverage
 - Impact on carriage
Patient blood sample → Test patient sera for functional response → FACS single cell sorting of patient B cells → RT and nested PCR of B cell variable regions

Antigen binding region

Cloning of antibody IgH and IgL variable regions into E. coli → Transfection of HEK293 cells - production of IgG antibodies into supernatant → hmAb characterisation and identification of epitope i.e. ELISA, flow cytometry, western blot, hSBA, LC-MS/MS
Assays used to characterise hmAbs

- ELISA and flow cytometry
 - Test for binding of antibody to \textit{N. meningitidis}
- Western blot
 - Identification of antigen (target protein) size
- Serum bactericidal assay (SBA)
 - Test for bacterial killing by antibody in combination with human complement
- Complement deposition assay (CDA)
 - Assess ability of antibody to recruit human complement factors C3c and C5b-9
 - C3c = opsonisation
 - C5b-9 = membrane attack complex
<table>
<thead>
<tr>
<th>Antibody</th>
<th>ELISA and flow cytometry</th>
<th>Western blot</th>
<th>Target size (kDa)</th>
<th>SBA</th>
<th>CDA: C3c</th>
<th>CDA: C5b-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>P02-1A1</td>
<td></td>
<td></td>
<td>30 - 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P02-5A2</td>
<td></td>
<td></td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P02-5E10</td>
<td></td>
<td></td>
<td>30 - 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P09-2F2</td>
<td></td>
<td></td>
<td>20-30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P09-2F7</td>
<td></td>
<td></td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future work:

- Identify target antigen
 - Immunoprecipitation and mass spectrometry
- Further characterise remaining antibodies