Neonatal meningitis and sepsis: what happens to survivors?

Meningitis & septicaemia | November 5th - 6th 2019 Professor Joy Lawn MBBS MPH PhD FRCPCH FMedSci

@MARCH_LSHTM

@joylawn #MRFConf2019

Prof Kim Mullholand according to on line programme!!

Thanks to many exceptional women!

Kate Milner

Cally Tann

Proma Paul

Jaya Chandna

Maya

Maya Kohli-Lynch

World you are born into determines your survival... and of disability

High income countries ~12 million births

Upper middle income countries ~39 million births

140 million births per year

Low and middle income countries

~45 million facility births

And the chance of being counted correctly - highest risk, least data ("Inverse data law")

Data waterfall ...

Cascade affecting case ascertainment for GBS or any invasive bacterial disease

Lawn JE, et al Clinical Infectious Diseases. 2017;65(S2):S89-99

100%

WHY do children die?

Global causes of child deaths under 5 years of age in 2017

WHO and UNICEF, 2018, From Li Liu, et al. Lancet, 2016

5.3 million

deaths

Cases clinically assessed

Cases - clinical syndromes

WHO definition for Possible Severe Bacterial Infection (pSBI):

The presence of **any one** of the following six signs :

(1) a history of difficulty feeding, (2) history of convulsions, (3) movement only when stimulated, (4) respiratory rate of 60 breaths per minute or more, (5) severe chest in-drawing, (6) temperature ≥ 37.5 °C, or ≤ 35.5 °C*

*Young Infants Clinical Signs Study Group. Clinical signs that predict severe illness in children under age 2 months: a multicentre study. *Lancet* 2008; 371(9607): 135-4

Meningitis Invasive CSF infection

Sepsis Invasive blood stream Increasing complexity

for clinical & lab diagnosis

Pneumonia Invasive respiratory infection

Figure adapted from Seale ... Lawn Lancet ID 2013

Estimates suggest that meningitis and neonatal sepsis combined are the second largest infectious killers of children aged under five. There has been some success in reducing cases and deaths over time, but progress still lags behind other infectious diseases.

Ð

Data waterfall ...

Cascade affecting case ascertainment for GBS or any invasive bacterial disease

Lawn JE, et al Clinical Infectious Diseases. 2017;65(S2):S89-99

Cases microbiologically assessed

Cases with laboratory investigation

Mismatch of investigation vs antibiotics use in a Gambian Teaching Hospital (N=4999)

94% inpatient neonates given antibiotics

Data waterfall ...

Cascade affecting case ascertainment for GBS or any invasive bacterial disease

Lawn JE, et al Clinical Infectious Diseases. 2017;65(S2):S89-99

Beyond Neonatal Survival

Long term disability after neonatal conditions

Beyond newborn survival: the world you are born into determines your risk of disability-free survival

Joy E. Lawn, Hannah Blenoowe, Gary L. Darmstadt & Zuifigar A. Bhutta

Pediatric Research (2013) | doi:10.1038/pr.2013.202 Advance online publication 15 November 2013

(2) PDF 🔮 Obtion	Naponta 9	Rights & permissions
------------------	-----------	----------------------

Every year, 135 million newborns enter the world, each arriving naked and apparently equal. Yet, their chances of surviving and thriving vary dramatically depending on which world these bables are born into—ranging from high-income countries with universal neonatal intensive care to the world of home births without midwives, medical supplies, or health system support (Figure 1).

http://www.nature.com/pr/journal/

NATURE PEDIATRIC RESEARCH

5 papers with first global estimates of incidence/prevalence & impairment:

- Preterm birth
- Retinopathy of Prematurity (ROP)
- Intrapartum-related neonatal encephalopathy
- Neonatal infections
- Neonatal jaundice

47 authors, 35 institutions led by LSHTM Input to Global Burden of Disease with IHME

Neonatal conditions accounted for **7.5%** of worldwide DALYs in 2017 Similar burden to all of Cardiovascular DALYS, 3 x HIV/AIDS Mostly (>95%) attributed to mortality

Survivors of Neonatal Meningitis

0.010

Moderate to severe neurodevelopmental impairment (8 studies, N=451)

Author	Year of publication	Country		ES (95% CI)	Percentage weight
Bell	1989	UK		- 0.38 (0.18, 0.62)	2.77
De Louvois	2005	UK		0.23 (0.17, 0.31)	29.06
Klinger	2000	Canada		0.16 (0.09, 0.25)	19.76
Franco	1992	USA		0.21 (0.05, 0.51)	2.46
Airede	2008	Nigeria		0.22 (0.11, 0.38)	6.86
Airede	1993	Nigeria		0.29 (0.13, 0.51)	3.53
Krebs	1996	Brazil	• • • • • • • • • • • • • • • • • • •	0.35 (0.22, 0.49)	7.54
Ali	1995	Trinidad		0.28 (0.15, 0.44)	6.51
Stevens	2003	UK		0.20 (0.13, 0.44)	21.50
Overall (12	= 13.5%, <i>P</i> =	0.32)	\diamond	0.23 (0.19, 0.26)	100.00

Mod to severe impairment = 23% (95% CI: 19–26%)

Mild impairment 12% (95% CI: 5–19%) Hearing impairment 7% (95% CI: 3–12%)

Anna C. Seale et al 2013, Ped Res, Nature Publishing 2013

0.010

Old, small, studies

Age of follow up (aged 2 to 5 yrs) Less likely to detect mild impairments

Measurement tools.. >100 child development assessment tools

Survivors of Neonatal Sepsis

Neurological and developmental outcome of neonatal jaundice and sepsis in rural Kenya

Anne L. Gordon^{1,2}, Michael English^{1,3}, J. Tumaini Dzombo¹, Mary Karisa¹ and Charles R. J. C. Newton^{1,2}

1 Centre for Geographic Medicine Research - Coast, KEMRI/Wellcome Trust Research Laboratories, Kilifi, Kenya

2 Neurosciences Unit, Institute of Child Health, University College London, UK

3 Departments of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, UK

Domain assessed	NJ $(n = 23)$	NS $(n = 24)$	CC $(n = 40)$	Comparison of NJ and CC groups	Comparison of NS and CC groups
Age (months) median (IQR)	23 (19, 27)	24 (19, 29)	27 (24, 30)	0.040	NS
Anthropometric data					
Weight (kg) mean (SD)	9.6 (2.0)	9.7 (1.6)	10.6 (1.3)	0.016	0.011
Height (cm) mean (SD)	78.4 (5.8)	79.5 (4.8)	81.5 (4.2)	0.011	NS
Head circumference (cm) mean (SD)	46.1 (1.7)	46.4 (2.5)	47.8 (1.4)	< 0.001	0.007
Head circumference below second centile§ no. (%)	19 (83)	14 (58)	16 (40)	0.001†	NS
Eye signs no. (%)					
Unable to elicit horizontal	12 (52)	1 (4)	0 (0)	<0.001†	NS
optokinetic nystagmus					
Smooth pursuit disturbed	11 (48)	2 (8)	1 (3)	< 0.001†	NS
Saccades disturbed	11 (48)	2 (8)	3 (8)	0.001†	NS
Neurological signs no. (%)					
Movement Disorder	11 (48)	0 (0)	3 (2)	0.001†	NS
Dystonia	8 (33)	0 (0)	0 (0)	<0.0017	NS
Motor signs no. (%)					
Posture and stability					
Unable to sit unsupported	8 (35)	0 (0)	0 (0)	<0.001†	NS
Unable to stand unsupported	10 (43)	4 (16)	0 (0)	<0.001†	0.008†
Locomotion					
Unable to walk independently	11 (48)	4 (16)	0 (0)	<0.001†	0.008†
Eye-hand and manipulation					
Unable to take lid off jar using two hands	11 (48)	5 (21)	0 (0)	<0.001†	0.009†
Unable to stack two blocks	10 (43)	5 (21)	0 (0)	<0.001†	0.009†
Unable to achieve pincer grasp	9 (38)	2 (9)	0 (0)	<0.001†	NS
with preferred hand					
Developmental scores median (range)					
Total score	37 (31, 42)	35 (32, 39)	42 (36, 48)	< 0.001‡	0.002‡
Motor	11 (9, 13)	11 (10, 12)	12 (10, 14)	NS‡	NS‡
Hearing, speech and language	7 (5, 9)	6 (4, 8)	8 (5, 11)	0.001‡	0.005‡
Eye-hand co-ordination	20 (14, 26)	20 (14, 26)	23 (19, 27)	0.043‡	0.016‡

One study of follow up after neonatal sepsis (average 2 yrs old)

Kilifi, Kenya – only 24 cases, ~17% "cerebral palsy"

Anna C. Seale et al 2013, Ped Res, Nature Publishing 2013

15 November 2017 Volume 65 Supplement 2

The Burden of Group B Streptococcus Worldwide for Pregnant Women, Stillbirths, and Children

OXFORD UNIVERSITY PRESS academic.oup.com/cid

A Supplement to Clinical Infectious Diseases

Group B Streptococcus

upported by a grant to the London School of Hygiene & Tropical Medicine from the Bill & Melinda Gates Foundation.

Editors: Joy E Lawn, Anna C Seale.

Lead authors: Joy E Lawn, Neal Russell, Jennifer Hall, Anna C Seale, Fiorella Bianchi-Jassir, Kirsty Le Doare, Lola Madrid, Maya Kohli-Lynch, and Cally J Tann.

Expert Advisory Group: Ajoke Sobanjo-ter Meulen, Carol Baker, Linda Bartlett, Claire Cutland, Michael Gravett. Paul Heath, Margaret Ip, Shabir A Madhi, Craig Rubens, Samir Saha, Stephanie Schrag and Johan Vekemans.

Survivors of Group B Strep Meningitis

Mod to severe neurodevelopmental impairment (15 studies, N=453, to age of 18 months)

Author	Country	Year of Publication	Number of GBS meningitis survivors	Number of GBS meningitis survivors with moderate-severe ND1		ES (95% CI)	% Weight
Northern Africa							
Ben Hamouda	Tunisia	2013	7	3	· •	0.43 (0.10, 0.82)	1.55
Subtotal (I-squ				-		0.43 (0.07, 0.79)	1.55
Developed					1		
Horn	USA	1974	7	1	4	0.14 (0.00, 0.58)	2.34
Haslam	USA	1977	15	2	*	0.13 (0.02, 0.40)	4.73
Chin	USA	1985	21	2 3 9 9	*	0.14 (0.03, 0.36)	6.11
Edwards	USA	1985	48	9	+	0.19 (0.09, 0.33)	10.18
Wald	USA	1986	54	9	*	0.17 (0.08, 0.29)	11.65
Franco	USA	1992	10	1	-	0.10 (0.00, 0.45)	3.77
Libster	USA	2012	85	8	.	0.09 (0.04, 0.18)	18.83
Schroder	Gemany	1982	10	4	· • • · · ·	0.40 (0.12, 0.74)	2.06
Bennhagen	Sweden	1987	16	4		0.25 (0.07, 0.52)	3.64
Bennhagen	Sweden	1987	9	1		0.11 (0.00, 0.48)	3.26
Bedford	UK	2001	103	30 8	1 	0.29 (0.21, 0.39)	14.04
Heath	UK	2017	37	8		0.22 (0.10, 0.38)	7.84
Subtotal (I-squ	ared = 29.3%	6, p = 0.158)			Ý	0.18 (0.13, 0.23)	88.45
Eastem Asia					1		
Zhu	China	2014	11	1	+	0.09 (0.00, 0.41)	4.30
Subtotal (I-squ	ared = .%, p	= .)			\Leftrightarrow	0.09 (-0.11, 0.30)	4.30
Southeastern A	sia						
Wee	Singapore	2016	20	3	+	0.15 (0.03, 0.38)	5.71
Subtotal (I-squ					\Leftrightarrow	0.15 (-0.02, 0.32)	5.71

Mod to severe impairment = 18% (95% CI: 13-22%)

MIND THE GAP MIND THE GAP 13/15 studies more than 10 yrs ago Age of follow up (aged 18 months) Less likely to detect mild impairments

Measurement tools.. >100 child development assessment tools

Step 4. Neurodevelopmental impairment after GBS

- 229,000 survivors of infant GBS disease with
 - Sepsis: 171,000
 - Meningitis: 58,000
- Risk of neurodevelopmental impairment after
 - GBS Meningitis: 18% moderate/severe NDI at 18 months
 - GBS Sepsis: not able to quantify long term outcomes
 - Mild neurodevelopmental impairment not quantified

Kohli-Lynch, et al Clinical Infectious Diseases. 2017;65(S2):S190-99

Min est of 10,000 infants (3000-27,000) per year moderate-severe neurodevelopment impairment after GBS meningitis, and <u>unknown after GBS sepsis</u>

#GBSburden

Finagel's laws of information

- 1. The information you have is not what you want
- 2. The information you want is not what you need
- 3. The information you need is not what you can obtain
- 4. The information you can obtain costs more than you want to pay

Laws to improve health information

- 1. The information we NEED
- 2. The information we have that we can USE now!
- 3. The information that we must OBTAIN!
- 4. The information system that would cost less if we INTEGRATED more!

Pessimistic 20th century Scottish man

Actionable 21st century Measurement improvement

Multi-domain measurement = messy!

Bars depict periods important for the development of each domain. Darker shading denotes critical periods of development.

Source: Adapted from Grantham-McGregor et al. 2007 and Thompson and Nelson 2001.

Archives of **Disease in Childhood**

Global child health: Design and implementation for early child development programmes P3

Rating early child development outcome measurement tools for routine health programme use

Dorothy Boggs, ^{1,2} Kate M Milner, ^{1,3} Jaya Chandna, ⁴ Maureen Black, ^{5,6} Vanessa Cavallera, ⁷ Tarun Dua, ⁷ Guenther Fink, ⁸ Ashish KC, ⁹ Sally Grantham-McGregor, ¹⁰ Jena Hamadani, ¹¹ Rob Hughes, ^{12,13} Karim Manji, ¹⁴ Dana Charles McCoy, ¹⁵ Cally Tann, ⁶, ^{1,16} Joy E Lawn¹

- Measuring neurodevelopment is multidomain. Must include hearing and vision.
- Over 100 tools (mostly measure 6mnths-3years) but few meet accuracy and feasibility criteria
- Major challenges: cost, training requirements and adaptability
- Need for a simple, adaptable measurement that can be used across multiple LMICs

Boggs, Dorothy, et al. "Rating early child development outcome measurement tools for routine health programme use." *Archives of disease in childhood* 104.Suppl 1 (2019): S22-S33

Fernald LCH, Prado E, Kariger P, Raikes A, SIEF World Bank 2017

WHO working on a new score (GSED) short and long form

Survivors of Group B Strep Meningitis and Sepsis

New data collection in progress

Cohort re-enrolment studies in 5 Low- middle income countries:

- Argentina
- India
- Kenya
- Mozambique
- South Africa

Age ~3-15!

Closing data gaps

- 1. Careseeking and UHC (<u>+</u> active surveillance)
- 2. Clinical care improved quality
- 3. Lab investigations, LP to become the norm
- 4. Lab capacity strengthening (esp for GBS) Innovation – diagnostics, new interventions
- Follow up systems for at-risk newborns and COHORT studies to 5 years and beyond
- Improved measures/tools to detect multi-domain impairment, feasible in routine programmes

Closing care gap

Image courtesy of Dr Ziyaad Dangor

Bad data will always be with us – but we need to smell it, improve it & use it!

Children, adults families affected need care, support and voice, not just a statistic

ADVANCE NOTICE Group B Strep Global Conference ISSAD 2021 in London @joylawn

Challenge 1 – exposure and definitions

STROBE – Neonatal Infections

Strengthening the Reporting of Observational Studies in Epidemiology for Newborn Infection (STROBE-NI): an extension of the STROBE statement for neonatal infection research

Elizabeth J A Fitchett, Anna C Seale, Stefania Vergnano, Michael Sharland, Paul T Heath, Samir K Saha, Ramesh Agarwal, Adejumoke I Ayede, Zulfiqar A Bhutta, Robert Black, Kalifa Bojang, Harry Campbell, Simon Cousens, Gary L Darmstadt, Shabir A Madhi, Ajoke Sobanjo-ter Meulen, Neena Modi, Janna Patterson, Shamim Qazi, Stephanie J Schrag, Barbara J Stoll, Stephen N Wall, Robinson D Wammanda, Joy E Lawn, on behalf of the SPRING (Strengthening Publications Reporting Infection in Newborns Globally) Group*

SPRINGuidance

Review

ELSEVIER The Lancet Infectious Diseases 2016 16, e202-e213DOI: (10.1016/S1473-3099(16)30082-2)