Meningitis Research Foundation

Neonatal Sepsis in sub-Saharan Africa

Anna Seale^{1,2,3,4}

¹London School of Hygiene & Tropical Medicine ²Public Health England ³ Haramaya University, Ethiopia ⁴KEMRI-Welllcome Trust Research Programme

I have no conflicts of interest to declare 18 October 2019

World War II Centre for Naval Analysis - warplanes

Neonatal sepsis – the diagnosis

Neonatal sepsis – morbidity

Neonatal sepsis – compartmental model estimates

Neonatal sepsis – population incidence based estimates

Neonatal sepsis – the aetiology

- 151 studies
- (82 since 2008)
- 84534 neonates
- 26 countries
- Almost all in hospital

- Staphylococcus aureus 25% (21–29)
- Klebsiella spp 21% (16–27)
- Escherichia coli 10% (8–10)

	1980-2007		2008-18	2008-18	
	Number of isolates	Proportion (95% CI)	Number of isolates	Proportion (95% CI)	
Bacteraemia or sepsis					
Gram-positive					
Staphylococcus aureus	912	0.25 (0.19-0.31)	2080	0.25 (0.21-0.29)	
Streptococcus pyogenes	75	0.04 (0.02-0.08)	117	0.04 (0.02-0.07)	
Group B streptococci	213	0.07 (0.03-0.12)	342	0.06 (0.03-0.10)	
Group D streptococci or enterococcus	139	0.05 (0.03–0.07)	449	0.05 (0.04–0.07)	
Streptococcus pneumoniae	72	0.04 (0.02-0.08)	114	0.02 (0.01-0.04)	
Viridians streptococci	7	0.01 (0-0.05)	71	0.03 (0.01-0.05)	
Other Streptococcus species	63	0.03 (0.01-0.05)	209	0.05 (0.03-0.07)	
Other or unspecified Gram-positives	86	0.04 (0.01–0.08)	155	0.06 (0.03–0.09)	
Gram-negative					
Klebsiella species	644	0.15 (0.11-0.20)	1730	0.21 (0.16-0.27)	
Escherichia coli	377	0.10 (0.08-0.13)	856	0.10 (0.08-0.13)	
Pseudomonas species	146	0.04 (0.02-0.05)	189	0.03 (0.02-0.04)	
Enterobacter species	270	0.08 (0.03-0.13)	263	0.04 (0.03-0.05)	
Serratia species	0		129	0.03 (0.01-0.07)	
Proteus species	54	0.02 (0.01-0.04)	126	0.03 (0.02-0.04)	
Salmonella species	162	0.03 (0.02-0.05)	176	0.04 (0.02-0.06)	
Citrobacter species	61	0.04 (0.01-0.07)	122	0.02 (0.02-0.04)	
Haemophilus influenzae	11	0.01 (0-0.02)	10	0.01 (0-0.03)	
Neisseria meningitidis	0		17	0.03 (0-0.08)	
Acinetobacter species	94	0.05 (0.02-0.07)	299	0.05 (0.03-0.07)	
Other or unspecified Gram-negatives	522	0.20 (0.14-0.27)	508	0.10 (0.06-0.14)	
Other pathogens	14	0.05 (0.02-0.07)	9	0.02 (0.01–0.04)	
Meningitis					

World War II Centre for Naval Analysis - warplanes

Abraham Wald: those that return to base are those that survive Strengthening needed where the bullet holes aren't seen

Neonatal sepsis – the example of Group B Streptococcus

Neonatal sepsis – the aetiology

- 151 studies
- (82 since 2008)
- 84534 neonates
- 26 countries
- Almost all in hospital

- Staphylococcus aureus 25%
 (21–29)
- Klebsiella spp 21% (16–27)
- Escherichia coli 10% (8–10)

	0			2008-18	
	1980-2007	1980-2007			
	Number of isolates	Proportion (95% CI)	Number of isolates	Proportion (95% CI)	
Bacteraemia or sepsis					
Gram-positive					
Staphylococcus aureus	912	0.25 (0.19-0.31)	2080	0.25 (0.21-0.29)	
Streptococcus pyogenes	75	0.04 (0.02-0.08)	117	0.04 (0.02-0.07)	
Group B streptococci	213	0.07 (0.03-0.12)	342	0.06 (0.03-0.10)	
Group D streptococci or enterococcus	139	0.05 (0.03–0.07)	449	0.05 (0.04–0.07)	
Streptococcus pneumoniae	72	0.04 (0.02-0.08)	114	0.02 (0.01-0.04)	
Viridians streptococci	7	0.01 (0-0.05)	71	0.03 (0.01-0.05)	
Other Streptococcus species	63	0.03 (0.01-0.05)	209	0.05 (0.03-0.07)	
Other or unspecified Gram-positives	86	0.04 (0.01–0.08)	155	0.06 (0.03–0.09)	
Gram-negative					
Klebsiella species	644	0.15 (0.11-0.20)	1730	0.21 (0.16-0.27)	
Escherichia coli	377	0.10 (0.08-0.13)	856	0.10 (0.08-0.13)	
Pseudomonas species	146	0.04 (0.02-0.05)	189	0.03 (0.02-0.04)	
Enterobacter species	270	0.08 (0.03-0.13)	263	0.04 (0.03-0.05)	
Serratia species	0		129	0.03 (0.01-0.07)	
Proteus species	54	0.02 (0.01-0.04)	126	0.03 (0.02-0.04)	
Salmonella species	162	0.03 (0.02-0.05)	176	0.04 (0.02-0.06)	
Citrobacter species	61	0.04 (0.01-0.07)	122	0.02 (0.02-0.04)	
Haemophilus influenzae	11	0.01 (0-0.02)	10	0.01 (0-0.03)	
Neisseria meningitidis	0		17	0.03 (0-0.08)	
Acinetobacter species	94	0.05 (0.02-0.07)	299	0.05 (0.03-0.07)	
Other or unspecified Gram-negatives	522	0.20 (0.14-0.27)	508	0.10 (0.06-0.14)	
Other pathogens	14	0.05 (0.02-0.07)	9	0.02 (0.01-0.04)	
Meningitis					

Neonatal sepsis – what are we missing

Early-onset, high mortality, difficult to sample, difficult to detect in the lab

Neonatal sepsis – what does this mean?

ANISA:

A robust, large, community based investigation of neonatal sepsis in South Asia

Neonatal sepsis – we need to look at alternatives

Neonatal sepsis – we need to look at alternatives

World War II Centre for Naval Analysis - warplanes

The analysis informed design of planes through the Vietnam War and is considered to have substantially reduced casualties.

Thank you

All those whose work is included here.

All my colleagues and collaborators at LSHTM, KEMRI-Wellcome Trust Research Programme, Haramaya University and Public Health England.

Particular thanks to Joy Lawn Anthony Scott Jay Berkley

