Non-invasive screening for meningitis via high-frequency transfontenellar ultrasound: Results from the UNITED-Meningitis study in Mozambique

Muhammad Sidat¹, Beatrice M. Jobst², Sara Ajanovic^{2,3}, Fabião Santos², Francesc Carandell², Rita Quesada², Dulce Graça⁴, Paula Rodrigues⁴, Sebastião Ngovene⁴, Mastalina Zandamela⁵, Justina Bramugy⁵, Pio Vitorino⁵, Janeta Machai⁵, Nilsa Nhatsave⁵, Anélsio Cossa⁵, Campos Mucasse⁵, Hassan Sial⁶, Paula Petrone⁶, W. Chris Buck^{4,7}, Javier Jiménez², Quique Bassat^{3,5,8,9,10}

¹ Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique; ² Kriba, Barcelona Science Park, Barcelona, Spain; ³ Barcelona Institute for Global Health, Hospital Clínic de Barcelona, Barcelona, Spain;⁴ Hospital Central de Maputo, Maputo, Mozambique;⁵ Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique; ⁶ Biomedical Data Science Team, Barcelona Institute for Global Health, Barcelona, Spain; ⁷ University of California David Geffen School of Medicine, Los Angeles, USA; ⁸ ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; ⁹ Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain; ¹⁰ Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain

Background

Results

- **Neonatal and infant meningitis** is a life-threatening disease, with significant **risk of death** or permanent neurologic **disability**.
- **Analysis of cerebrospinal fluid** (CSF) obtained through lumbar punctures (LP) continues to be the **gold standard** for diagnosing meningitis.
- In resource-limited settings, conditions may not allow LP to be performed or CSF to be analysed for white blood cells (WBC).
- **Alternative screening tools** could help overcome this obstacle by detecting at-risk infants who may benefit from presumptive treatment and/or early referral.
- **UNITED-Meningitis** is a prospective diagnostic study evaluating a **novel** non-invasive, high-frequency ultrasonography (HFUS) exam for transfontanellar imaging using deep learning (DL) models for the detection of very low concentrations of WBCs in CSF.

Methods

Neonates and infants hospitalized at Hospital Central de Maputo with

Interim results analysis for 68 participants recruited from March 2021-June 2023 was performed.

Exclusion of 2 participants diagnosed with hydrocephalus, 12 with inadequate image acquisitions (incorrect imaging location, excessive movement, overlying blood vessels, or poor coupling), 11 without CSF results and 24 with sub-optimal acquisitions (due to signal attenuation), 19 (27.9%) participants with 20 paired CSF WBC

suspected meningitis (with/without pre-LP antibiotics) and an open **anterior fontanelle** were eligible for inclusion after informed consent.

- Known hydrocephalus and central nervous system malformations were exclusion criteria.
- LP was performed with CSF testing for cell counts, protein, and bacteriological exams (culture and latex agglutination).
- **HFUS** was performed at recruitment, with follow-up exams for participants with elevated WBC counts.
- HFUS images were processed by the **DL algorithm**, previously trained using a cohort of Spanish neonatal patients, and a threshold of ≥ 30 WBC/ μ L to define meningitis cases.

• The DL algorithm correctly identified 5/5 meningitis cases (100%) sensitivity) and 13/15 controls (86.6% specificity).

Conclusions

HFUS+DL show promise as a non-invasive, quick screening tool for CSF **pleocytosis** suggestive of meningitis in neonates and infants.

- Efforts are underway to **improve HFUS image quality and penetration** by using methods for improved coupling for patients with dense/curly hair or thicker fontanelles, higher voltage, increased pulse frequency, and refined DL models.
- Follow-up images will be analyzed to assess the use of **HFUS+DL to** measure treatment response.

Instituto de Salud Carlos III (FIS PI16/00738)

Bill & Melinda Gates Foundation (INV-048197)

Funding:

Control