Safety and Immunogenicity of Quadrivalent Meningococcal Polysaccharide Vaccine (MPV ACYW135) Compared with Quadrivalent Meningococcal Conjugate Vaccine (Menactra®) in Malian Children


a. Centre pour le Développement des Vaccins du Mali (CVD-Mali), Bamako, Mali
b. Department of Pediatrics, Division of Pediatric Infectious Diseases, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
c. Vaccine Evaluation Unit, UK Health Security Agency, Public Health Laboratory, Manchester, UK
d. Walvax Biotechnology Co., Ltd., Kunming, Yunnan, China
e. Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy

Introduction
Neisseria meningitidis causes significant morbidity and mortality in children and young adults worldwide. Among 12 meningococcal serogroups identified so far, the majority of meningococcal disease is caused by six serogroups namely A, B, C, X, Y and W. As recommended by WHO, the availability of significant quantities of vaccines will allow a constant supply of meningococcal vaccine containing N. meningitidis C and W polysaccharides for emergency stockpiles to be used in reactive vaccination campaigns to control large outbreaks in African meningitis belt countries, or whenever needed.

Methods

Study Group
1 dose of MPV ACYW135 (N=130)
C: Control Group
1 dose of Menactra® (N=130)

Follow-up
Immunogenicity Evaluation (1 month post immunization)
Safety Observation (through 6 months post immunization)

In this study (NCT04450498), healthy, 2- to 10-year-old children in Bamako, Mali, were randomized 1:1 to receive one dose of MPV ACYW135 or Menactra®. Safety outcomes were evaluated for 6 months post-immunization. Immunogenicity for all serogroups was assessed for non-inferiority between MPV ACYW135 and Menactra® 30 days post immunization by serum bactericidal antibody assay using baby rabbit complement (sRBA) with blood samples taken on the day of vaccination and 30 days after vaccination.

Primary immunogenicity endpoint:
• Seroconversion rates as defined by the percentages of subjects with sRBA titers ≥ 128 to each of the four serogroups A, C, Y, W of N. meningitidis at Day 30 after vaccination along with its two-sided 95% CI

Secondary immunogenicity endpoints:
• % of subjects with a sRBA ≥ 4-fold increase 30 days after vaccination as compared to baseline unadjusted titers for all serogroups
• % of subjects with ≥ 8 at 30 days after vaccination
• sRBA geometric mean titers (GMTs) of specific antibodies to groups A, C, Y, and W meningococci in both vaccine groups

Safety endpoints:
• % of subjects with local and systemic reactions within 7 days
• % of subjects with reported AEs within 30 days
• % of subjects with reported SAEs within 6 months

Results

One dose of MPV ACYW induces non-inferior immune responses as compared to Menactra® at Day 30 post vaccination
• Non-inferior immunogenicity of MPV ACYW135 as compared to Menactra® was both demonstrated when comparing the percentages of subjects in each vaccine group with sRBA titers ≥ 128 (primary endpoint) and those achieving a sRBA ≥ 4-fold increase after vaccination as compared to baseline unadjusted titers (secondary endpoint)
• Proportions of subjects with ≥ sRBA titers ≥ 8 for all serogroups were similar between vaccine groups (p>0.05)
• Geometric Mean Titers (GMTs) and Geometric Mean Fold Increases (GMFI) for all serogroups in both vaccine groups were similar between vaccine groups (p>0.05)

Conclusions
This study demonstrates that MPV ACYW135 vaccine has a similar reactogenicity and immunogenicity profile to Menactra® vaccine. Therefore, MPV ACYW135 vaccine can be stockpiled and used in reactive immunization campaigns to control local outbreaks of N. meningitidis serogroups C and W in Africa and in other settings until affordable conjugate polysaccharide vaccines become available.

Acknowledgments
The authors gratefully acknowledge Pharmalys Ltd. for coordinating the study in Mali; the Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS) for performing data management and statistical analysis; and the Vaccine Evaluation Unit, National Infection Service, UK Health Security Agency, Manchester, UK for sRBA testing, respectively. Finally, the authors express their gratitude to the children who took part in this study along with their parents, for their support and commitment.

Funding Source
This work was supported by Yuxi Walvax Biotechnology Co., Ltd., Yuxi, Yunnan, China.

References
5. WHO (2019). Invasive Meningococcal Disease-Serotype Distribution. Available at: https://www.who.int/health-topics/meningitides#tab=1