
CAN CURRENT HEALTH ECONOMIC MODELING FRAMEWORKS CAPTURE 
THE UNPREDICTABILITY OF INVASIVE MENINGOCOCCAL DISEASE?

1Pharmerit International, Bethesda, MD, USA; 2Pfizer Inc., Collegeville, PA, USA; 3Pfizer Ltd, Tadworth, UK● Overall incidence of invasive meningococcal
disease (IMD) is low; serogroup-specific
incidence can be erratic and unpredictable.
Even with appropriate treatment, IMD still
causes substantial mortality and morbidity.

● To introduce new vaccines into
national immunization programs,
many countries have instituted health
technology assessments that require
a cost-effectiveness analysis (CEA).

● The health economic model used in these
evaluations typically requires an assumption
of endemic disease epidemiology, which thus
far has been incompatible with variable and
unpredictable IMD.
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OBJECTIVE

To review and assess disease incidence and CEA methodology and their influence on predicting vaccine impact.

METHODS
● A targeted review of published or presented IMD vaccine CEAs was conducted using PubMed and desktop research.
● Inclusion criteria:

• IMD
• Any serogroup or combination of serogroups (e.g., serogroup B, C, ACWY, or CWXY )
• CEA
• Published between 2000 and 2018

● Identified articles that met inclusion criteria were reviewed, and data were extracted regarding:
– Country of analysis, model structure, and time horizon
– Incidence:

• Number of years of historical IMD incidence used for base-case CEA inputs
• Stochasticity of epidemiology inputs considered
• Sensitivity analysis considered and how

Study Country Model Structure and Time Horizon Baseline Incidence Inputs Years in baseline 
Incidence 

Assumption

Outbreak/ 
Stochastic 
situation 

considered?

Incidence-Based 
Sensitivity Analysis 

Conducted?

Selected Study Results

MenC vaccination

De Wals et al., 2004 Canada Cohort model (decision tree, 24 years) Age-specific 3 scenarios range
1.20, 12.6, and 24.1/100,000 PY

1990-1996, 1996-
2000, 1999 (UK)

Various 
probability

Yes (7 plausible
epidemiological scenarios) Case reduction: 65%-70%

Welte et al., 2004 Netherlands Cohort model (decision tree, 20 years) Overall 2.28/100,000 and age-
specific 1997-2001 No Yes (25% higher or lower

than baseline Severe squelae averted: 1.14-1.21
De Soares et al., 2011 Brazil Cohort model (decision tree, 10 years) Age-specific (5.11-22.82/100,000) 2006 No Yes Case averted: 1,218-2,728

MenB Vaccination

Christensen et al., 2013 UK
Cohort model (Markov model, 100 years) 
and transmission dynamic model (100
years)

Overall 3.17/100,000 and age-
specific

2004/2005-
2005/2006 No Yes (1997/1998 2005-2006 Cases averted: 484-1,800

Pouwels et al., 2013 Netherlands Cohort model (Markov model, 99 years) Overall 1.07/100,000 2005-2009 No Yes (3.46/100,000from 1990-
1993 and one way sensitivity

Cases averted 4.53-12.58 cases/100,000 
person-years

Tu et al., 2014 Canada Cohort model (Markov, model, lifetime) Overall 0.19/100,000 2000-2010 No Yes (1x-10x of base case) Case averted: 4.6 per birth cohort

Christensen et al., 2014 UK Transmission dynamic model (99 years) Age-specific 2005/2006-
2011/2012 No Compared with previous

model
Cases averted:
No herd effect: 5,962-51,685
With herd effect: 52,152-91,304

Tirani et al., 2015 Italy Cohort model (1 cohort followed for 100
years)

Overall 0.21/100,000 and age-
specific 2007-2012 No Yes (use min and max of

each age group over 6 years ICER: €61,076-€699,548

Izquierdo et al., 2015 Chile One-time catch-up program for outbreak 
Prevention Overall 5.9/100,000 1990-1999 Yes No Averted 215 cases yearly

Christensen et al., 2016 Germany Cohort model (Markov, 100 years) and 
transmission dynamic model

Overall 0.34/100,000 and age-
specific 2009-2012 No

Yes (0.39 and 0.27/100,000
between 2002-2012 and
2013-2014)

Case averted:
No herd effect: 6%-15%
With herd effect: 19%-55%

Gasparini et al., 2016 Italy Cohort model (decision tree, lifetime) Overall 0.23/100,000 or 3x higher 2007-2012 No Yes (3x baseline) Case averted: 83-249

Ginsperg et al., 2016 Israel Cohort model (decision tree, 10 years) Overall 0.94/100,000 2000-2013 No Yes (1.2x baseline) Cases averted: 148-334

Lecocq et al., 2016 France Cohort model (Markov model, 100 years) Overall 0.61-0.76/100,000 2003-2011 No Yes (0.75x-1.25x baseline)
Cases averted:
No herd effect: 5%-23%
With herd effect: 24%-51%

MenACYW Vaccination

Ortega-Sanchez et al., 2008 United States Cohort model (Monte Carlo
simulation, 10 years) Age-specific (0.3-4.6/100,000) 1991-2002 No Yes (+/- baseline based on 

empirical distribution) Cases averted: 48% - 99%

De Wals et al., 2007 Canada Cohort model (Markov model, 99
years) Age-specific (0.2-2.3/100,000) 1995-2001 No Yes (0.5x-2.0x baseline age)

Cases averted per 100,000:
No herd effect: 2.8
With herd effect: 2.8

Hepkema et al., 2013 Netherlands Cohort model (decision tree, 99 years) Overall 0.15/100,000 and age-
specific 2007-2011 No Yes (incidence from 2011)

Threshold incidence/100,000 for cost
effective: No herd effect: 0.65-1.53 With
herd effect: 0.35-0.87

Demarteau et al., 2013 Canada Static population model with annual
cycles reproduced (100 years)

300 cases per year with a peak
350 at a 10-year interval 2013 Yes Yes (RF 0.5 and 1 accounts

for unpredictability) Cases averted in 40 years: 4,355-4,629

Demarteau et al., 2015 Saudi Arabia Static population model with annual
cycles reproduced (100 years)

34 cases per year with a peak
300 at 15-year interval 1995 & 1999 Yes Yes (RF 0.5 and 1 accounts

for unpredictability Cases averted: 1,539-2,493

Ceyhan et al., 2015 Turkey Static population model with annual
cycles reproduced (100 years)

900 cases per year multiplied by a
random number 80% - 120% 2005-2006 Yes Yes (RF 0.8 and 1.2 accounts

for unpredictability) Cases averted: 19,816

Christensen et al., 2016 England Cohort model (Markov model, 100
years)

Outbreaks every 10 years (range, 5-
15) with a peak 1,000 per year
(range, 500-1,500) and a duration
of 20 years (range, 5-30)

2011/2012-
2014/2015 Yes

Yes (ranges of outbreak
-15, annual case 500-1,500,
and duration 5-30)

Continuing the MenACWY adolescent 
program in the long term was likely to
be highly cost-effective

Delea et al., 2017 Canada Cohort model (Markov model, 100
years) Age-specific (0.036-1.306/100,000) 2007-2009 No Yes (+/- 50% of the base

case)
Additional cases averted with
adolescent MCV4 program: 1,826 (252-
7,031)

Kuznik et al., 2017 Africa 
Meningitis Belt

Cohort model (Markov model, 40
years) 50 or 150/100,000 per year 1995 No Yes (CE threshold analysis by 

country) Cases averted: 13-142/100,000

De Wals and Zhou 2017 Canada Cohort model (Markov model, 99
years)

0.08/100,000 as low
and 0.28/100,000 as
high

2006-2011 No Yes (+/- 20%) Incidence reduction: 15.8%-100% 
ICER: 36,000$ CAD-452,000$ CAD

MenCYWX Vaccination

Yaesoubi et al., 2018 Burkina Faso Transmission dynamic model (30 years) Age-specific 2002-2015 No No
Cases reduction:
With strain replacement: 45% (26%-62%)
Without strain replacement: 43% (22%-59%)

• 24 articles or conference presentations were reviewed. Of these, 3 CEAs evaluated MenC, 10 evaluated Men B, 10 evaluated MenACWY and 1 evaluated MenCWYX
(Table 1).

• Median historical incidence rates considered in calculating base-case epidemiological inputs were 5 years (mean = 5.95 and SD = 4.01), and only approximately one-fourth
of models considered incidence rates occurring in more than 10 years of the time period in the past (Figure 2).

• Approximately two-thirds of models were developed based on a static approach in which the dynamics of IMD (susceptible, infected, and recovered) were not
captured (Figure 1).

• Four interval cycle models were developed based on assumptions of a certain number of cases over a period of time in which probability of endemic episode or outbreak
was taken into consideration and follows a fixed pattern, whereas the average incidence rate over the modeling time horizon would not change (Table 1 and Figure 1)

• All models conducted sensitivity analyses based on epidemiological inputs. One model considered various scenarios of total numbers of cases from outbreaks as
epidemiological inputs, whereas others either used observed incidence rates from different years or considered expert opinions as epidemiological inputs to conduct
sensitivity analyses.

• No models considered the potential for emerging serogroups (Table 1).

RESULTS

Figure 1. Type of Models Structure (N = 24)

Figure 2. Proportion of Publications With Years 
of Historical Incidences Used in Calculating 
Epidemiology Inputs (N = 2 4)

Table 1. Summary of Reviewed Studies

CE=cost-effectiveness; ICER=incremental cost-effectiveness ratio; RF=
random factor; UK=United Kingdom.

Selected Quotes Relevant to 
Epidemiology Inputs from the 

Review

Christensen et al. (2014): “Assumptions about 
disease incidence are also highly influential.
We are currently experiencing low rates of
disease, which might increase in the
future….”

DeWals & Zhou (2017): “The epidemiology of
IMD is unpredictable and outbreaks caused by 
serogroup A, W or Y clones may occur 
anywhere…. The economic value of such an
insurance policy is, however, difficult to assess.”

• Over the past several decades, IMD
has been characterized by the
emergence of hyperinvasive clones
expressing different polysaccharide
capsules, demonstrating the highly
unpredictable dynamics of this life-
threatening disease.

• With constrained health care resources, health
technology assessments have become necessary to
interrogate whether a health care intervention is
good value for money, however cost-effectiveness
modeling approaches to assess meningococcal
vaccination strategies have yet to develop a
methodology sufficient to capture the natural
fluctuations and unpredictability of IMD.

• IMD incidence is simultaneously the most
sensitive and uncertain parameter in CEAs.
Given the stochastic and unpredictable nature 
of IMD, it calls into question whether current
tools for health economic assessment are
sufficient to assess the value of vaccines.

• Further research is needed to determine how to
best incorporate stochastic IMD incidence into
health technology assessments

CONCLUSION
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