

Bristol Childrens Vaccine Centre

PCV in developing countries Give 2+1

Adam Finn @adamhfinn

Is this your ideal perspective?

Bly_...or do you prefer to take the broader view?

PCVs have important indirect effects

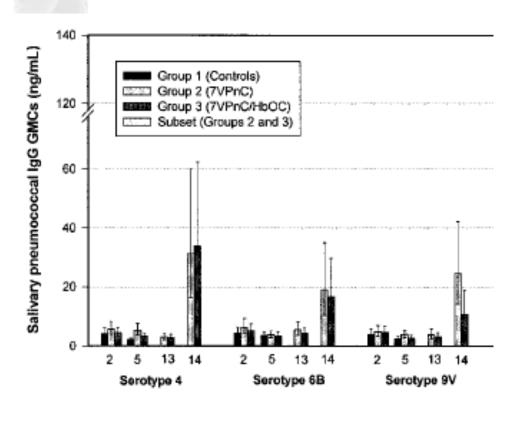
This is not new...

Efficacy of pneumococcal conjugate vaccines and their effect on carriage and antimicrobial resistance

Keith P Klugman

Table 1. Effect of conjugate pneumococcal vaccines on the nasopharyngeal carriage of pneumococci

Country	Type of study and type of vaccine and	Doses of vaccine	Age at vaccination (months)/carriage measurement	Carriage of vaccine serotypes [number (%)]	p value or 95% CI of difference	Carriage of non- vaccine serotypes [number (%)]	p value or 95% CI of difference
	valency		(months after	in/vaccinees controls		in vaccinees/controls	
		_	primary series)			or relative risk (95% CI)	
Gambia ⁷	CRM 5*	3	2,3,4/20	13/26 (50)/144/160 (90)	<0.001	20/26 (77)/68/160 (43)	0-0023
Finland ¹⁶	CRM 7†	4	2,4,6,12/12	·· (9-5)/ ·· (16-2)	33-55%	·· (11·2)/ ·· (7·5)	9-103%
USA ¹³	CRM 7†	4	2,4,6,12/1,6,12	61/257(24)/83/234 (36)	0.004	RR1-2 (95 Cl 1-1-1-3)	0-004
UK ¹²	CRM 7*	3	2,3,4/20-44	17/150(11-2)/17/126(13-5)	NS	20/150 (13)/17/126 (13)	NS
South Africa®	CRM 9†	3	1.5,2.5,3-5/5-5	43/242 (18)/87/239 (36)	<0.001	87/242 (36)/58/239 (24)	0.007
Israel ¹⁰	CRM 9†	1 or 2	12-35/>1	161/973(17)/264/971(27)	0-001	368/973(38)/274/971(28)	0-001
Israel*	OMP 7†	1 or 2	12,15,18/12	17/135 (13)/14/57 (25)	0.065	48/135 (36)/18/57 (32)	NS
Israel ¹⁷	D4 or T4†	3	2,4,6/1,6,7	10/134 (7-5)/19/70 (27)		·· (17-47)/ ·· (16-22)	NS
Iceland ¹⁸	D8 or T8*	3 or 4	3,4,6,12/>1	·· (26)/ ·· (40)	0.0003	Not stated	
Israel ¹⁹	DT 11*	4	2,4,6,12/12	22/141 (16)/18/57 (32)	0.019	41/141 (29)/16/157 (28)	NS


CRM=CRM_{str} conjugate, D=diphtheria toxoid conjugate, NS=not significant, T=tetanus toxoid conjugate, OMP=outer membrane protein complex of Neisseria meningitidis serogroup B. *Case-control study, †randomised study.

Salivary antibody responses

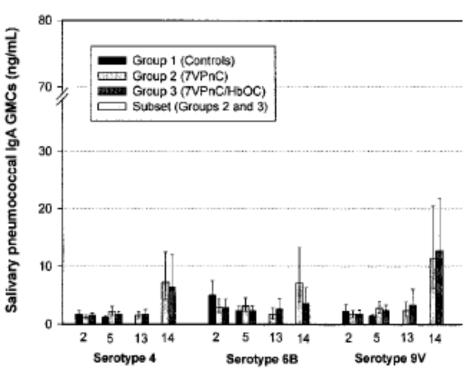


Figure 2. Salivary anticapsular IgG antibody geometri

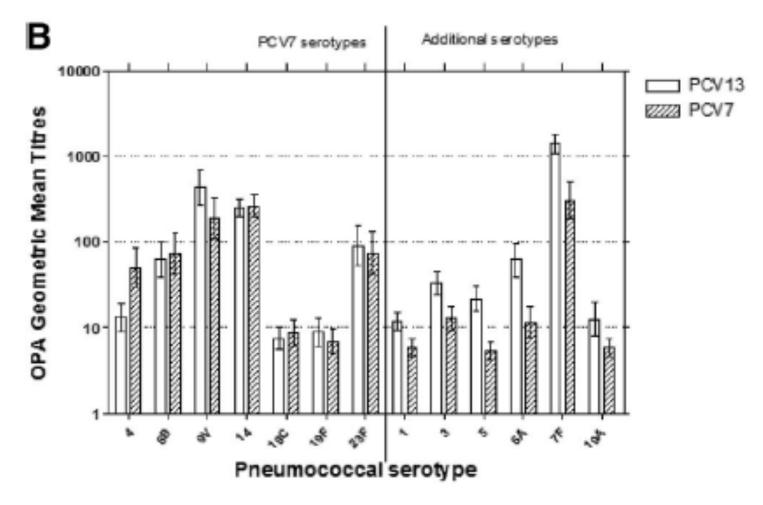
Figure 1. Salivary anticapsular IgA antibody geometr

Functional antibody after priming wanes..

Immunogenicity and Reactogenicity of a 13-Valentpneumococcal Conjugate Vaccine Administered at 2, 4, and 12 Months of Age

A Double-blind Randomized Active-controlled Trial

Matthew D. Snape, MB BS, MD,* Chaam L. Klinger, MB BS,* Elvis D. Daniels, MD, PhD,†
Tessa M. John, RN,* Helen Layton, BA,* Llinos Rollinson, RN,* Sarah Pestridge, BSc,‡
Sandra Dymond, RN,§ Eva Galiza, BSc, MB BS,¶ Susan Tansey, MB ChB,† Daniel A. Scott, MD,†
Sherryl A. Baker, PhD,† Thomas R. Jones, PhD,† Ly-Mee Yu, MSc,|| William C. Gruber, PhD,†
Emilio A. Emini, PhD,† Saul N. Faust, PhD,‡ Adam Finn, PhD,§ Paul T. Heath, FRACP, FRCPCH,¶
and Andrew J. Pollard, MB BS, PhD*



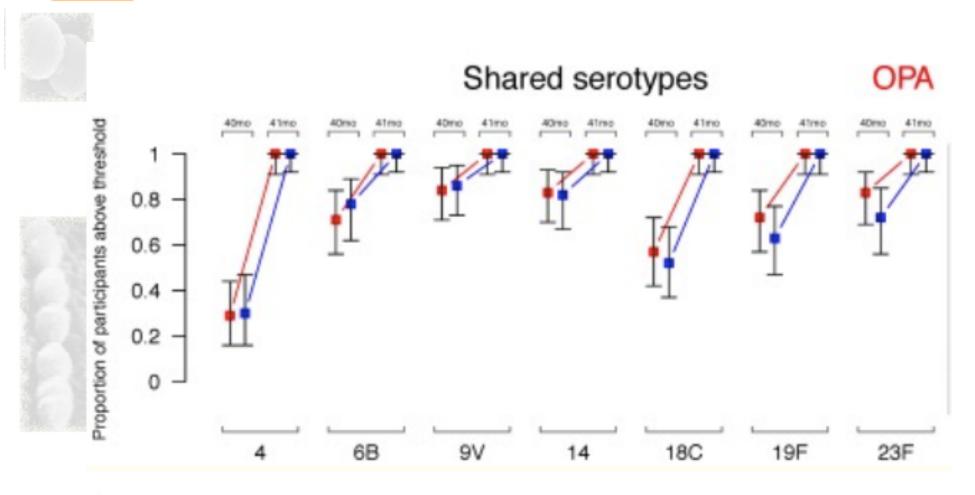
Functional antibody after boosting persists..

PLoS One. 2014; 9(3): e91413.

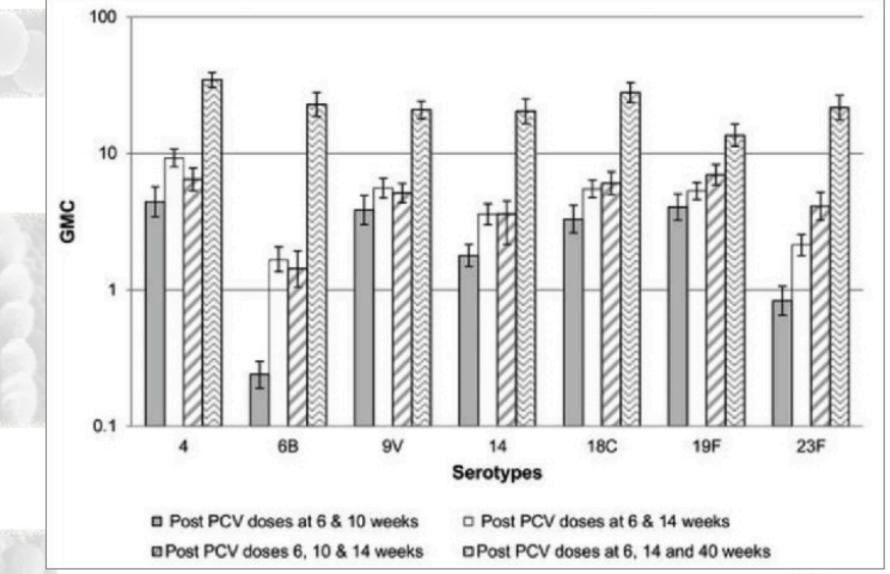
Published online 2014 Mar 11. doi: <u>10.1371/journal.pone.0091413</u>

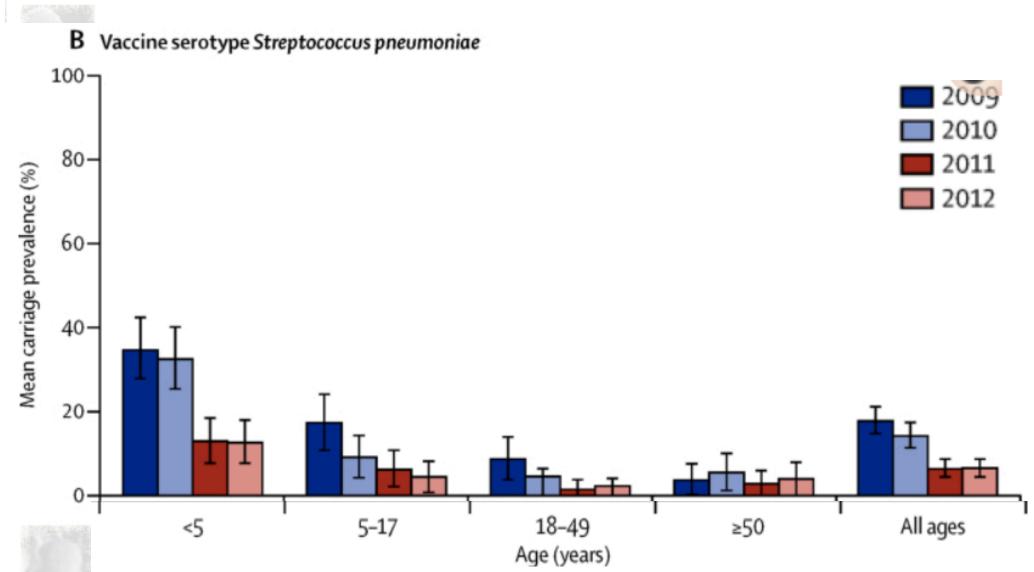
PMCID: PMC3950188

PMID: 24618837


Pneumococcal Serotype-Specific Antibodies Persist through Early Childhood after Infant Immunization: Follow-Up from a Randomized Controlled Trial

Johannes Trück, ^{1,*} Matthew D. Snape, ¹ Florencia Tatangeli, ¹ Merryn Voysey, ² Ly-Mee Yu, ² Saul N. Faust, ³ Paul T. Heath, ⁴ Adam Finn, ⁵ and Andrew J. Pollard ¹


B V C


More antibody..

B VC

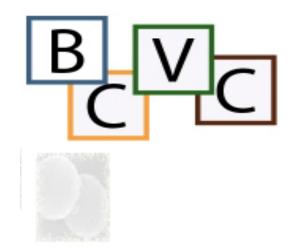
VT carriage - Kenya

Hammitt et al Lancet Glob Health. 2014 Jul; 2(7):e397-405

..and, of course, it's not just about indirect protection..

Effectiveness of 7- and 13-Valent Pneumococcal Conjugate Vaccines in a Schedule Without a Booster Dose: A 10-Year Observational Study •••

Sanjay Jayasinghe ™, Clayton Chiu, Helen Quinn, Rob Menzies, Robin Gilmour, Peter McIntyre


Clinical Infectious Diseases, Volume 67, Issue 3, 1 August 2018, Pages 367–374,

https://doi.org/10.1093/cid/ciy129

Published: 17 February 2018 Article history ▼

Dose	Age Range, Months	Cases N (% Vaccinated)	Case-Control		Indirect Cohort	
		vaccillateu	Controls N (% Vaccinated)	Vaccine Effectiveness, % (95% CI, <i>P</i>)	Controls ^a N (% Vaccinated)	Vaccine Effectiveness, % (95% CI, <i>P</i>)
3	Age <12	16 (31.3)	169 (72.8)	92.9 (27.7 to 99.3, 0.025)	101 (84.2)	91.4 (72.0 to 97.4, <0.001)
	Age 12– 24	24 (83.3)	265 (95.1)	70.6 (5.2 to 90.9, 0.040)	198 (90.4)	46.9 (-71.5 to 83.6, 0.290)

From 12 months post-dose 3, the odds of VT IPD by 24-36 months increased significantly for PCV7 (5.6, 95% CI, 1.2-25.4) and PCV13 (5.9, 95% CI, 1.0-35.2).

So:

- → 3+0 provides direct protection for a limited period as shown in 2 RCTs.
- For people with blinkers it's a dead cert to do that - and only that
- 2+1 provides both sustained direct and indirect protection across the population
- For people with a broader perspective it's the obvious choice
- · More evidence on 2+1 is coming soon

