Neisseria lactamica induces anti-Neisseria meningitidis B-cell responses

Adam P. Dale*, Anastasia A. Theodosiou, Jay R. Laver, Eleanor F. Roche, Andrew Gorringe, Marta E. Polak, Robert C. Read

*NIHR Academic Clinical Lecturer
University of Southampton, UK
MBChB, PhD, MRCP, FRCPath
Background:

• There is an inverse relationship between pharyngeal colonisation with *Neisseria lactamica* (Nlac) and *Neisseria meningitidis* (Nmen).

• Controlled human infection with Nlac displaces Nmen and prevents new Nmen colonisation events.

• The mechanism underlying this phenomenon is not yet elucidated. If it was understood, it could be exploited to develop novel strategies to prevent Nmen colonisation +/- disease.

• Nlac colonisation does not induce anti-Nmen serum bactericidal activity (SBA).

• We propose that the induction of cross-reactive adaptive cellular or humoral responses, independent of SBA, may be responsible for observed effect.

Aims:

• To assess whether Nlac colonisation induces anti-Nmen B cell responses.

• To assess whether B cell response frequencies were associated with Nlac colonisation density.
Study design:

- Healthy adults randomised 2:1 to received intra-nasal inoculation with intervention (Nlac, 10^5 CFU) or control (PBS).

- Nlac/Nmen colonisation status assessed at 0, 7, 14 and 28 days (culture of oropharyngeal swab and nasal wash).

- Blood taken at all time points to assess cellular responses.

Study flow diagram:

Screening
- Assessed for eligibility (n=50)
 - Ineligible (n=18)
 - N. meningitidis colonised (n=5)
 - N. lactamica colonised (n=2)
 - Hb below cut off (n=8)
 - Other reason (n=2)

Eligible (n=32)
- Withdrawn prior to allocation (n=1)
 - New immunocompromised contact (n=1)

Allocation
- Allocated to intervention (n=20)
- Allocated to control (n=11)

Follow-up visits (days 7, 14 & 28 post-inoculation)

Immunological analysis
- Excluded from immunological analysis (n=2)
 - N. meningitidis colonisation at day 0 (n=1)
 - Not colonised with N. lactamica following inoculation (n=2)
- Excluded from immunological analysis (n=1)
 - N. meningitidis colonisation at day 0 (n=1)
- Analysed (n=17)
- Analysed (n=10)

Nlac/Nmen colonisation:
- Nlac colonised (blue)
- Nmen colonised (red)
- TS (oropharyngeal swab)
- NW (nasal wash)

Key:
- Nlac colonised (blue)
- Nmen colonised (red)
- TS (oropharyngeal swab)
- NW (nasal wash)
Colonisation with Nlac induces anti-Nmen B_{PLAS} & B_{MEM} responses

IgA/IgG B_{PLAS} ELISpot

Collated B_{PLAS} data

Collated B_{MEM} data

IgG B_{MEM} ELISpot

Key:
- Keyhole limpet haemocyanin (Klh)
- Nlac (Y92-1009) dOMV (Nlac)
- Nmen (H44/76) dOMV (Nmen)
- Influenza haemagglutinin (H1N1) (Flu)
Nlac-specific B_{PLAS} responses and IgG titers are associated with Nlac colonisation density

Nlac colonisation density vs. IgA B_{PLAS} responses

Nlac colonisation density vs. day-28 IgG responses (plasma)

Nlac colonisation density vs. baseline Nlac/Nmen IgG B_{MEM} responses

Correlations assessed with Spearman’s Rho (r_s) (*$P < 0.05$)
Conclusions

- Colonisation with Nlac induced B_{PLAS} and B_{MEM} responses specific to Nlac and Nmen, suggesting that the previously observed protective effect of Nlac on Nmen may have an immunological basis.

- Nlac colonisation density negatively correlated with anti-Nlac IgG titers and anti-Nlac IgA-secreting B_{PLAS} frequencies suggesting that the magnitude of these responses may play a role in controlling Nlac colonisation density.

- We predict that protection against Nmen colonisation may only occur in those where Nlac colonisation results in the formation of anti-Nmen B cell and antibody responses.

Acknowledgements

Read Group:
Robert Read
Jay Laver
Anastasia Theodosiou
Alison Hill
Eleanor Roche
Carl Webb
Mukhtar Ibrahim
Muhammed Ahmed
Diane Gbesemete
Hans De Graaf

Southampton Clinical Research Facility (CRF)
Saul Faust
Victoria Buxton
Rachel Miller-Price
Sara Hughes
CRF administration & research nursing team

Public Health England,
Porton Down:
Andrew Gorringle
Holly Humphries

NIHR | Southampton Biomedical Research Centre
NIHR Southampton Biomedical Research Centre
Southampton Clinical Research Facility
System Immunology Group: Marta Polak

University of Southampton
UNIVERSITY OF SOUTHAMPTON

University Hospital Southampton
NHS Foundation Trust