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Objectives: Evaluate the ability of polysaccharide-conjugate vaccines (PCVs) to
adequately protect against total pneumococcal meningitis.
Methods: References for this review were identified through searches of PubMed for
articles published from January 1930 to the present by use of the terms "Streptococcus
pneumoniae", "meningitis", "PCV", "serotype replacement", “capsule type”, “capsule
dependent disease”, and "nasopharynx to brain transmission". Relevant articles were
also identified through searches in Google and Google Scholar. Articles resulting from
these searches and relevant references cited in those articles were also reviewed. Only
articles written in English were included.
Results:	PCVs	target	the	pneumococcal	capsular	types	in	the	US	and	Europe	that	were	
the	most	common	causes	of	fatal	pneumonia	and	sepsis.		As	these	types	were	
eliminated	by	the	vaccines,	it	became	apparent	that	in	immunized	populations,	most	
invasive	diseases	caused	by	pneumococci,	including	bacteraemia,	sepsis,	and	
complicated	pneumonia,	were	greatly	reduced.		However,	the	protective	effects	of	PCVs	
against	another	invasive	disease,	meningitis,	showed	much	less,	or	no	decrease	in	
disease	incidence.	Even	in	the	presence	of	the	PCVs,	meningitis	rates	in	children	have	
been	reported	globally	to	be	as	high	as	13	per	100,000	annually.	The	PCV	type	strains,	
which	had	been	largely	eliminated	from	carriage,	were	replaced	by	a	broad	diversity	of	
new	capsular	types	that	generally	failed	to	cause	frequent	sepsis	but	were	able	to	cause	
meningitis	at	levels	similar	to,	or	in	excess	of,	prior	pneumococcal	meningitis	rates.		We	
suspect	that	this	occurred	because	of	a	direct	transmission	of	the	non-PCV	strains	from	
the	nasopharynx	to	the	brain	through	non-haematogenous routes.		
Conclusions: Since virtually all cases of pneumococcal meningitis lead to either
permanent neurological sequelae or death, it would be well worth the effort to develop
a new vaccine capable of preventing pneumococcal meningitis regardless of capsular
type. Such a vaccine would need to protect against colonization with most, if not all,
pneumococci.
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CONCLUSIONS
1. Pneumococcal meningitis continues to cause morbidity and mortality among children and
adults despite widespread use of PCVs in several countries around the globe.

2. In those countries pneumococcal meningitis is caused by non-PCV type strains that have
occupied the niche created by the almost complete elimination of PCV type strains in the
human nasopharynx.

3. Since the PCVs result in a major reduction in bacteraemia, sepsis, and complicated
pneumonia, it is unlikely that the non-PCV type strains can generally survive well in the blood,
and therefore probably enter the brain through non-haematogenous routes.

4. The high serotype diversity of these new replacement strains makes it problematic to expand
the PCVs with enough capsular types to stem strain replacement and prevent the majority of
pneumococcal meningitis.

5. One way to prevent pneumococcal meningitis is to completely eradicate pneumococcal
colonization. This might be best done with a vaccine that targets the important pneumococcal
virulence factors essential for colonization.
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Figure 3b PCV type and non-PCV type strains that are reported to cause meningitis in the PCV era. In this figure, PCV7 and PCV13 strains
are shown in green and purple circles respectively. The brown circle shows non-PCV type strains causing meningitis. The overlapping
regions of the circles represent PCV type strains that have been reported to cause some meningitis post-PCV use. The serotype data
shown here comes from Figure 1a except that the data from Japan was excluded as that study reported only on serotypes causing
meningitis in the pre-PCV era. NT represents pneumococci of unknown capsular type.

Figure	4	Model	to	explain	our	view	of	how	pneumococcal	meningitis	largely	escapes	protection	by	PCV	immunization.		A.	This	figure	follows	PCV-
capsule-type	strains	from	acquisition	to	their	disease	manifestations.			They	colonize	the	upper	airway	and	can	spread	in	some	cases	to	the	middle	
ear	where	they	cause	otitis	media.		From	the	upper	airway	they	can	spread	to	the	lung	to	cause	pneumonia,	which	in	some	cases leads	to	
detectable	bacteraemia or serious	sepsis.		In	infants	they	can	also	cause	bacteraemia without	a	primary	focus	of	infection.			The	classic	view	has	
been	that	meningitis	is	the	result	of	pneumococci	crossing	the	blood-brain	barrier.		This	view	is	likely	to	be	true	in	many/most	cases	of	meningitis	
caused	by	PCV	type	strains	because	they	are	able	to	invade	the	blood.			B. The	non-PCV	strains	appear	to	be	less	likely	to	cause	bacteraemia,	sepsis,	
and	complicated	pneumonia	than	are	the	PCV	strains.		The	poor	virulence	of	the	non-PCV	strains	in	the	blood	is	consistent	with	the	view	that	their	
capsular	structures	are	not	compatible	with	survival	in	the	blood.			However,	the	non-PCV	type	strains	are	still	able	to	efficiently	cause	
pneumococcal	pneumonia.			The	relative	inability	of	these	strains	to	cause	bacteraemia and	sepsis	even	though	they	cause	most	of	the	meningitis	in	
PCV	immune	populations,	strongly	suggest	that	they	reach	the	brain	through	a	non-haematogenous route.	If	non-PCV	strains	can	reach	the	brain	
through	a	non-haematogenous route,	then	it	would	seem	likely	that	pneumococci	of	many	of	the	PCV	capsular	types	could	probably	also	reach	the	
brain	in	this	manner.	

Figure	3a	Worldwide	distribution	of	paediatric meningitis	strains.	Each	continent	is	represented	by	data	from	one	country	except	the	
European	region	where	data	from	England/Wales	and	France	are	shown	.	The	capsular	types	are	listed	according	to	those	causing most	to	
least	meningitis post	PCV13	introduction.	Since	there	was	no	published	data	from	Australia,	data	from	the	Australian	IPD	Surveillance	
dataset	was	analyzed	by	enumerating	the	number	of	cases	of	paediatric meningitis	caused	by	each	serotype	for	the	years	2012-17	(post	
PCV13	period).	Data	from	France,	UK,	and	Israel	only	provides	information	for	non-PCV	type	strains.	North	America	(USA),	Africa	(Burkina	
Faso),	and	Australia	shows	both	vaccine	type	(VT)	and	non-vaccine	type	(NVT)	strains	causing	paediatric meningitis	after	the	introduction	
of	PCV13.		Data	from	South	America	(Brazil)	show	both	VT	and	NVT	strains	post	PCV10	introduction.	The	data	from	Japan	shows	pre-PCV	
capsule	types	causing	meningitis	since	there	was	no	data	from	Japan	that	listed	capsule	types	causing	paediatric meningitis	in	the	post-
PCV	period.	Bolded	strains	represent	NVT	strains,	non-bolded	strains	are	VT	strains,	while	capsular	types	colored	red	represent	the	most	
common	carriage	strains	worldwide.		The	representative	studies	chosen	were	based	on	study	size	and	recent	data.
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Figure	5	Model	of	the	pneumococcal	surface	showing	surface	proteins	that	are	being	investigated	as	vaccine	candidates.			All	of	the	molecules	
shown	in	color	are	proteins	that	have	been	reported	to	elicit	protection	against	colonization.		Pneumolysin has	been	reported	in	some	cases	to	play	a	
role	in	colonization	but	its	ability	to	elicit	protection	against	colonization	in	not	clear.		Figure	modified	from	Briles et	al	1998.	
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Figure 1 Graphs comparing rates of paediatric non-meningitis IPD (nm-IPD) and paediatric meningitis. (A) This figure from a study
conducted in Israel by Ben Shimol et al 2016 shows that although there has been a steady decline in nm-IPD in the post-PCV period, incidence
of paediatric meningitis has remained almost as high as pre-PCV levels. (B) The continued high level of meningitis IPD has been mainly enabled
by the emergence of meningitis-causing non-vaccine type strains.
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Figure 2 Graphs comparing rates of paediatric meningitis in the pre- and post-PCV period. (A) Figure from a study conducted in France by
Ouldali et al 2018 shows that a rebound in the rates (red squares) of paediatric meningitis between the early and late PCV13 periods. (B) The
increase in meningitis rates has been driven by non-vaccine type strains, largely by type 24F.
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