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A comprehensive panel of analytical methods has been assembled for GMMA characterization with particular attention to their surface OAg, which is key target of protective antibody response. 

Such methods are of fundamental importance in the process of vaccine development, to ensure consistency of production and to monitor stability of GMMA over time.  

Mutations introduced in GMMA producing strains to enhance blebbing and reduce LPS toxicity can impact OAg expression levels and structural characteristics. Careful characterization is needed to 

identify optimal GMMA candidates for inclusion in a vaccine against iNTS.  

Simplicity of manufacturing process, coupled with encouraging immunogenicity data, make the GMMA approach particularly attractive for the development of a vaccine against iNTS. 
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Invasive nontyphoidal Salmonella disease (iNTS) is a leading cause of bloodstream infections in Africa and no 

licensed vaccines are currently available. The most common pathogens are Salmonella Typhimurium (STm) 

and Salmonella Enteritidis (SEn)1. 

The O-antigen (OAg) portion of lipopolysaccharide (LPS) is a key antigen for protective immunity and 

represents a target  for the development of effective vaccines against iNTS2. 

With the aim to develop a bivalent OAg-based vaccine against STm and SEn, Generalized Modules for 

Membrane Antigens (GMMA) were proposed as an attractive OAg delivery system3. 

Gram-negative bacteria naturally shed outer membrane vesicles (OMV) which imitate the bacterial surface, 

maintaining structure, composition, and orientation of outer membrane components, including LPS and OAg4.  

Wild type GMMA-producing strains were firstly genetically manipulated to increase GMMA production (ΔtolR) 

and further mutated to reduce LPS reactogenicity (ΔmsbB, ΔhtrB, ΔpagP)5. 

Advantages of GMMA vaccines include simplicity and low cost of manufacture, co-delivery of multiple 

antigens in the context of a membrane and bacterial “danger signals” triggering innate immunity, obtaining a 

self-adjuvanting activity. 

GMMA platform has been applied to different pathogens (Salmonella, Shigella, Meningococcus) for the 

production of vaccines for low and middle income countries6-7.. 
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Methods to determine quality, consistency of production and stability of OMV vaccines are of fundamental 

importance. It is important to characterize the key antigens displayed on OMV surface and presented to the 

immune system, and also OMV as particles.  

In the context of identification of the most suitable GMMA candidate vaccines against iNTS, we have 

developed a panel of analytical methods for LPS/OAg and GMMA characterization3. 

Our aim was to evaluate the impact of genetic mutations introduced into GMMA-producing strains on OAg 

expression, structure and composition, and the resulting impact on GMMA immunogenicity. 

Particle size distribution of GMMA from different mutants was evaluated by comparing three different methods: 

Dynamic Light Scattering (DLS), Multi-Angle Light Scattering (MALS) coupled with High Performance 

Liquid Chromatography - Size Exclusion Chromatography (HPLC-SEC), and Nanoparticle Tracking 

Analysis (NTA)8.  
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Analyses were performed directly on STm and SEn GMMA from different mutated 

strains and on their OAg. 

OAg extracted9 from GMMA were compared to OAg produced by corresponding wild 

type strains. 

CONCLUSIONS 

ΔtolR mutation impact on OAg size 

distribution (High/low molecular mass 

OAg populations, HMM/LMM). 
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Analyses on GMMA 

GMMA purity 

Low % of free soluble proteins and 

nucleic acid contaminants (<5%), 

indicating GMMA good purity. 
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GMMA 

w/w OAg/ 

GMMA protein 

ratio 

Molar % OAg 

chains/ 

total LPS 

nmol  

lipid A/ 

mg GMMA 

protein 

SEn ΔtolR 0.6 14 156.6 

SEn ΔtolR ΔmsbB 1.7 22 240.1 

 SEn ΔtolR 

ΔmsbB ΔpagP 
1.5 12 528.0 

STm ΔtolR  0.7 10 172.8 

STm ΔtolR 

ΔmsbB 
0.03 <1 108.2 

STm ΔtolR ΔhtrB 0.02 0.45 154.8 

Impact on OAg production after lipid A detoxification 

mutations introduced in some strains. 

Large portion of LPS molecules containing just core. 

GMMA OAg and lipid A content 

Combination of ΔmsbB-ΔpagP mutations as 

optimal approach to minimize STm and SEn 

GMMA reactogenicity, resulting in pure penta-

acylated lipid A. 

GMMA Lipid A structure 

GMMA immunogenicity 

High levels of serotype-specific anti-OAg-specific IgG 

functional antibodies induced by all GMMA, with no significant 

differences despite variations in OAg density and chain length, 

when tested in mice at the same OAg dose. 

Anti-OAg IgG response booster effect shown by all GMMA. 
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SBA titres 

• CD1 mice immunised 

at days 0 and 28. 

• 1 µg OAg dose + 

Alhydrogel  

  (0.7 mg/mL Al3+). 

• Anti-OAg IgG 

geometric means and 

individual Abs levels 

induced. 

• SBA results of pooled 

sera at day 42. 
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Strengths and weaknesses shown by each methodology, providing complementary information and allowing a more complete evaluation of GMMA size.   

SEC-MALS and NTA able to better distinguish populations of different size and preferable to DLS for analysis of bimodal samples. 

Real time visualization with simultaneously tracking and counting of individual particles by NTA, but results deeply dependent on the choice of data analysis parameters. 

Higher DLS Z-average diameters compared to MALS size for OAg-positive GMMA. Hydrodynamic diameter increases with the number of OAg chains per particle. 
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