A Novel Vaccine against Capsular Group B Meningococcal Disease Based on an Adenoviral Vector: Preclinical Development, Evaluation and Optimization for Clinical Development

C. Dold¹, L. Marsay¹, L. Silva-Reyes¹, D. Wyllie², J. P. Derrick³, P.T. Beernink⁴, A.V. Hill², A. J. Pollard¹, C.S. Rollier¹

¹Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK. ²Jenner Institute, University of Oxford, UK. ³Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK. ⁴Department of Pediatrics, University of California, San Francisco, USA

1. Introduction: Replication-deficient adenoviral vectors
- Expression of target protein in host cells
- Induction of antibody and cellular responses (three COVID-19 vaccines)
- Supports functional antibody responses (intrinsic adjuvant effect)
- Potential for expression of a bacterial antigen? Group B meningococcal vaccine?

2. Methods: Construction and evaluation of vaccines
- Insertion of group B meningococcal target antigens NadA or fHbp, package into Adenovirus → antigen expression?
- Point mutations in fHbp gene (2 versions, M1 and M2) → abrogate binding to human factor H?
- Immunogenicity in mouse → Serum bactericidal antibody responses in presence of human fH?

3. Results: Confirm antigen expression
Infect HeLa cells – detection with monoclonal antibody

NadA and fHbp are expressed in target cells

4. Results: mutated fHbp does not bind fH
Infect HeLa cells, Incubate with human fH, detect bound hfH

Mutation in fHbp abrogates binding to fH
Same result with mutation M2 (not shown)

5. Results: Immunogenicity in mice

Immunization with Ad NadA
- Ad NadA induces antibody responses (ELISA) but NO hSBA (<1:4, data not shown)

Immunization with Ad fHbp M1 or Ad fHbp M2
- Ad fHbp → antibody responses (ELISA, not shown) + hSBA

6. Conclusions
- fHbp can be incorporated in Ad, resulting in immunogenic vaccine with functional antibodies → clinical development

Acknowledgements: Action Medical Research (SP4594), MeningitisNow, Medical Research Council Confidence in Concept (Oxford), Oxford Innovation Fund (9534), Medical Research Council DPFS (MRM0076931), NIHR Oxford Biomedical Research Centre, Oxford, Vaccine theme.