The detection of multiple meningitis pathogens, next-generation tools and new explorations – (Taqman)

Authors

Affiliations
1WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
2NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
3Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
4World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo
5Department of Paediatrics, Sylvanus Olympio Teaching Hospital, Lomé, Togo
6University of Ghana School of Medicine and Dentistry, P.O Box 4236, Accra, Ghana
7Komfo Anokye Teaching Hospital, P.O. BOX 1934, Kumasi, Ghana
8Institute of Child Health, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu State, Nigeria
9Department of Paediatrics University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu State, Nigeria
10Department of Paediatrics, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria
11Laboratoire Hospital National de Niamey, Niamey, Niger
12Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, UK
13Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

Background
Despite the implementation of effective conjugate vaccines against the three main bacterial pathogens that cause meningitis, Streptococcus pneumoniae, Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup A., the burden of meningitis in West Africa remains high. The relative importance of other bacterial, viral and parasitic pathogens in central nervous system infections is less clear.

Methods
Cerebrospinal fluid (CSF) specimens were collected from children under five years with suspected meningitis presenting at pediatric teaching hospitals across West Africa in 5 countries that are part of the Paediatric Bacterial Meningitis (PBM) surveillance; Senegal, Ghana, Togo, Nigeria and Niger. CSF specimens were initially tested using a real time PCR assay used in routine meningitis surveillance targeting N. meningitidis, S. pneumoniae and H. influenzae. A custom meningitis TaqMan Array Card (TAC) assay was later used to detect 35 pathogens including 15 bacteria, 17 viruses, 1 fungus and 2 protozoans.

Results
Among 711 CSF specimens tested, the pathogen positivity rates were 2% and 20% by standard PCR (3 pathogens) and TAC (35 pathogens), respectively. TAC detected 10 bacterial pathogens, 8 viral pathogens, and Plasmodium. Overall, E. coli was the most prevalent (4.8%), followed by S. pneumoniae (3.5%) and Plasmodium (3.5%). Multiple pathogens were detected in 4.4% of the specimens. Detection of HIV and Plasmodium were associated with mortality. Among 220 neonates, 17% had at least one pathogen detected, dominated by the Gram-negative bacteria.

Conclusions
The meningitis TAC enhanced detection of pathogens in children with meningitis and may be useful for case-based meningitis surveillance.