Meningitis and Septicaemia 2019 November 5-6, 2019, British Museum, London.

The detection of multiple meningitis pathogens, next-generation tools and new explorations – (Taqman)

Authors

Brenda A. Kwambana-Adams^{1,2}, Jie Liu³, Catherine Okoi¹, Jason M. Mwenda⁴, Nuredin I. Mohammed¹, Enyonam Tsolenyanu⁵, Lorna Awo Renner⁶, Daniel Ansong⁶, Beckie N. Tagbo ^{8,9}, Muhammad F. Bashir¹⁰, Mamadou Kourna Hama¹¹, Mouhamadou A. Sonko ¹², Jean Gratz³, Archibald Worwui¹, Peter Ndow¹, Adam L. Cohen¹², Fatima Sehran¹², Richard Mihigo⁴, Martin Antonio¹,¹¹3,¹⁴ and Eric Houpt³# on behalf of the Paediatric Bacterial Meningitis Surveillance Network in West Africa

Affiliations

¹WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia

²NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK ³Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America

⁴World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo

⁵Department of Paediatrics, Sylvanus Olympio Teaching Hospital, Lomé, Togo

⁶University of Ghana School of Medicine and Dentistry, PO Box 4236, Accra, Ghana

⁷Komfo Anokye Teaching Hospital, P.O. BOX 1934, Kumasi, Ghana

⁸Institute of Child Health, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu State, Nigeria

⁹Department of Paediatrics University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu State, Nigeria

¹⁰Department of Paediatrics, Abubakar Tafawa Balewa University Teaching Hospital, Bauchi, Nigeria

¹¹Laboratoire Hopital National de Niamey, Niamey, Niger

¹²World Health Organization, Geneva, Switzerland

¹³Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, UK

¹⁴Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

Background

Despite the implementation of effective conjugate vaccines against the three main bacterial pathogens that cause meningitis, *Streptococcus pneumoniae*, *Haemophilus influenzae* type b (Hib) and *Neisseria meningitidis* serogroup A., the burden of meningitis in West Africa remains high. The relative importance of other bacterial, viral and parasitic pathogens in central nervous system infections is less clear.

Methods

Cerebrospinal fluid (CSF) specimens were collected from children under five years with suspected meningitis presenting at pediatric teaching hospitals across West Africa in 5 countries that are part of the Paediatric Bacterial Meningitis (PBM) surveillance; Senegal, Ghana, Togo, Nigeria and Niger. CSF specimens were initially tested using a real time PCR assay used in routine meningitis surveillance targeting *N. meningitidis*, *S. pneumoniae* and *H. influenzae*. A custom meningitis TaqMan Array Card (TAC) assay was later used to detect 35 pathogens including 15 bacteria, 17 viruses, 1 fungus and 2 protozoans.

Results

Among 711 CSF specimens tested, the pathogen positivity rates were 2% and 20% by standard PCR (3 pathogens) and TAC (35 pathogens), respectively. TAC detected 10 bacterial pathogens, 8 viral pathogens, and *Plasmodium*. Overall, *E. coli* was the most prevalent (4.8%), followed by *S. pneumoniae* (3.5%) and *Plasmodium* (3.5%). Multiple pathogens were detected in 4.4% of the specimens. Detection of HIV and *Plasmodium* were associated with mortality. Among 220 neonates, 17% had at least one pathogen detected, dominated by the Gram-negative bacteria.

Conclusions

The meningitis TAC enhanced detection of pathogens in children with meningitis and may be useful for case-based meningitis surveillance.