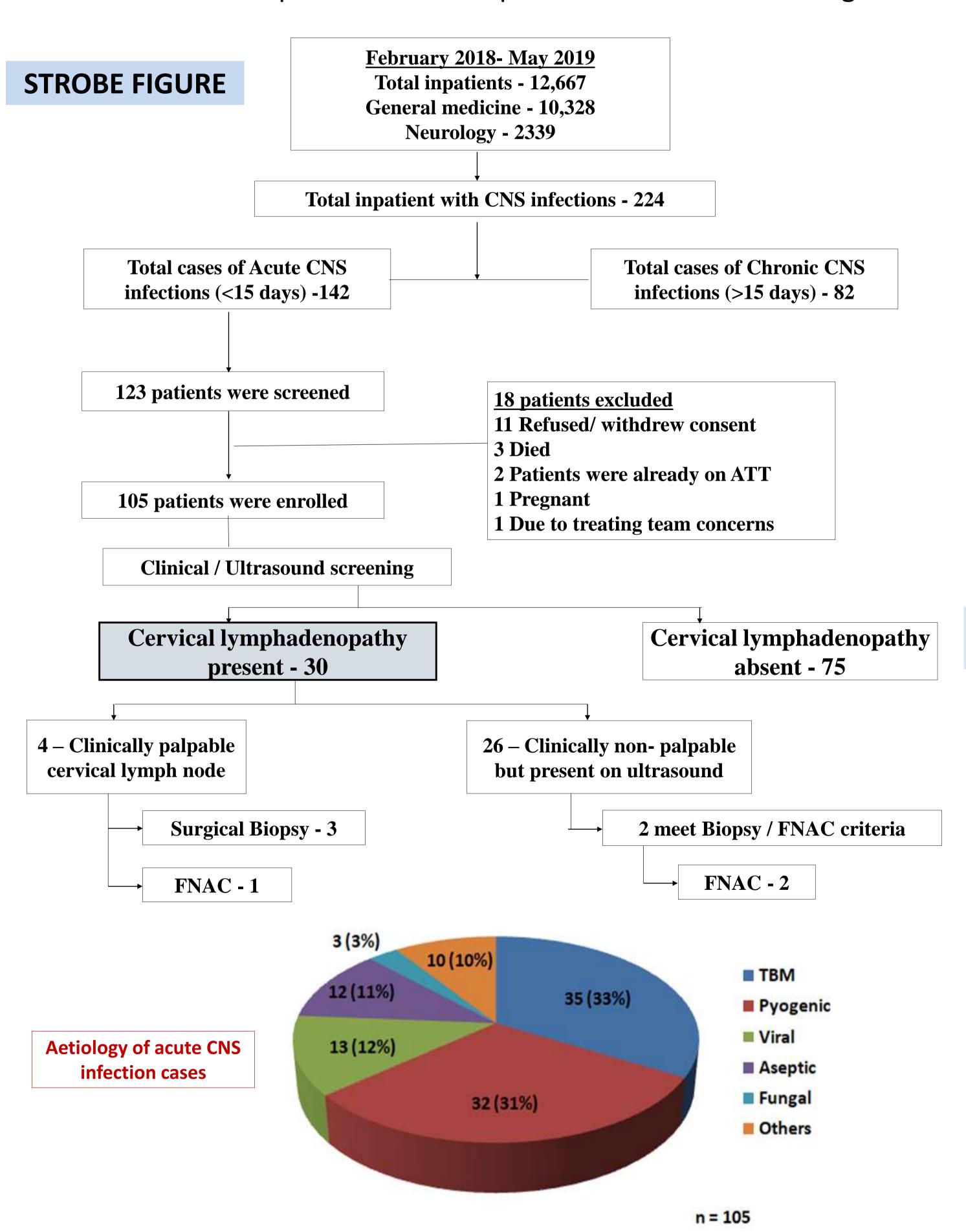
Prevalence of cervical lymphadenopathy in acute CNS infections – Testing the Glymphatics in humans

Smitesh Gutta¹, Tina George¹, Pavithra Mannam², Pranay Gaikwad³, Mathew Alexander⁴, Thambu David S¹

¹Department of General Medicine, ²Department of Radiology, ³Department of Surgery, ⁴Department of Neurology

Introduction

- India accounts for one-fifth of all meningitis deaths worldwide. (1)
- Current diagnostic methods are limited by pauci-microbial nature of acute CNS infections in CSF.
- Recently discovered Glymphatics play vital role in movement of CSF along with substance present in it to cervical LN in animal models. (2)
- We planned to study the prevalence of cervical lymphadenopathy and assess diagnostic yield of cervical LN biopsy.
- This might provide evidence for presence of Glymphatics in humans.


Objectives

Primary objective – To determine the prevalence of cervical lymphadenopathy in patients with acute CNS infections.

Secondary objective – To assess the diagnostic yield of culture from cervical lymph node biopsy in the definitive diagnosis of acute CNS bacterial infection.

Methods

- Prospective cross-sectional study
- Screened clinically and radiologically for cervical lymphadenopathy.
- Biopsy (surgical/FNAC) was carried in cases wherever it was feasible.
- Biopsy sample was sent for histopath, aerobic and MGIT culture.
- Results were compared with CSF reports and the clinician's diagnosis.

Results ■ Total cases 25 (23.8%) Cases with cervical 13 (12.4%) lymphadenopathy 12 (11.4%) **35 30 All CNS TBM Pyogenic** Viral **Aseptic Fungal Others Infections**

Table below showing univariate analysis of characteristics in acute CNS infections cases with presence versus absence of cervical lymphadenopathy

Variables	Cer	vical Lym	phadenopat	hy	Univariate Analysis			
Variables	Presence (n = 30)		Absence(n =75)		Odd ratio	95% CI	p value	
Age (years) : Mean ± SD	38.0 ± 16.9		44.4 ± 17.2		0.98	0.95, 1.00	0.098	
Gender - Male	16	53.3	45	60.0	0.76	0.33, 1.77	0.528	
Lower SES Class	17	56.7	38	50.7	1.27	0.54, 2.99	0.579	
Severity of illness (GCS <15)	26	86.7	60	80	1.51	0.48, 4.74	0.481	
Duration of illness 1-5 days	13	43.3	37	49.3				
6-15 days	17	56.7	38	50.7	1.26	0.54, 2.93	0.587	
Prior antibiotics (\geq 48 hours)	3	10	12	16	0.65	0.18, 2.30	0.500	
Co-morbidities								
Presence of any of the immunosuppressive states (DM/CKD/HIV/Immunosuppressive drugs)	5	16.7	29	38.7	0.34	0.12, 0.95	0.040	
HTN	3	10.0	15	20.0	0.50	0.14, 1.72	0.271	
Obstructive Airway Disease	3	10.0	2	2.7	3.74	0.70, 20.10	0.124	
Past History of Tuberculosis	2	6.7	8	10.7	0.7	0.16, 3.05	0.631	
CSF Characteristics								
Neutrophilic Predominant	17	56.7	55	73.3	0.48	0.20,1.15	0.098	
Counts (cell/mm3) : Mean ± SD	313.0 ± 520.1		481.1 ± 1776.9		1.00	1.00, 1.00	0.874	
Glucose (mg/dl) : Mean ± SD	67.3 ± 29.7		67.2 ± 39.9		1.00	0.99, 1.01	0.941	
Protein (mg/dl) : Mean ± SD	133.6 ± 97.6		232.3 ± 615.5		1.00	1.00, 1.00	0.732	
Risk factors associated alteration in Glymphatics								
Insomnia	18	60	41	54.7	1.24	0.53,2.94	0.619	

Discussion and Conclusion

- Prevalence of cervical lymphadenopathy in patients with acute CNS infections was 28.57% which was significantly higher than its prevalence in normal adults (<1%) (3)
- No significant difference in prevalence among different types of CNS infections.
- The finding of granulomatous inflammation on histopathology of biopsied nodes from patients with acute TB meningitis correlated subsequently with the MGIT culture.
- With the help of the FNAC or biopsy of cervical nodes, the number of patients with definite microbiological evidence increased by 25% from 8 to 10 patients at the time of discharge from hospital.
- This finding was helpful in real-time to the treating team of physicians in rapid diagnosis of the disease and initiation of appropriate therapy.
- Cervical lymphadenopathy could provide for additional diagnostic aid in diagnosis of acute CNS infections and also its higher prevalence in acute CNS infections has provided evidence for possible role of glymphatics acting as a channel for spread of the CNS infections to cervical lymph nodes.

Table below showing the smear, culture and histopathology reports of CSF and lymph node biopsy of two patients where biopsy of cervical LN had helped treating physicians in definite diagnosis and prompt appropriate therapy

				Lymph node										
CASE	Gram stain	Aerobic c/s	AFB smear	MGIT	Detection Method	Node Level	Biopsy methods	Gram stain	Aerobic c/s	AFB smear	MGIT	Histopath	Diagnosis	
Case A	negative	negative	negative	positive	USG	IV	FNAC	negative	negative	negative	negative	Granulomatous inflammation	TB meningitis	
Case B	negative	negative	negative	negative	Clinical	II	Surgical	negative	negative	negative	positive	Granulomatous inflammation with AFB seen	TB meningitis	

Acknowledgement

- Grateful to all our patients and their families who agreed to take part in
- study despite all their hardships for advancement of medical science.
 We would like to acknowledge Dr. Deepa Rebecca Korula for her support with ultrasound imaging of the study patients.
- Funding Institutional Fluid Research Grants, Christian Medical College,
 Vellore, India.

References

- 1) Zunt JR, Kassebaum NJ, Blake N, Glennie L, Wright C, Nichols E, et al. Global, regional, and national burden of meningitis, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2018 Dec;17(12):1061–82.
- Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, et al. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System. J Neurosci. 2015 Jan 14;35(2):518–26.
 Richner S, Laifer G. Peripheral lymphadenopathy in immunocompetent adults. Swiss Med Wkly. 2010 Feb 20;140(7–8):98–104.