Changes in Pneumococcal Meningitis Incidence Following Introduction of PCV10 and PCV13: **Results from the Global PSERENADE Project** Yangyupei Yang¹ on behalf of the PSERENADE Team^{*}

Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, Maryland, USA¹

INTRODUCTION

The introduction of pneumococcal conjugate vaccines (PCV10 and PCV13) into national infant immunization programs worldwide has reduced invasive pneumococcal disease (IPD).

Pneumococcal meningitis is a small subset of pneumococcal disease but a major cause of severe childhood morbidity and mortality globally [1].

Because PCV impact may differ by syndrome, we assessed the change in pneumococcal meningitis incidence globally after PCV10/PCV13 introduction for children <5 years and adults ≥18 years, by PCV product.

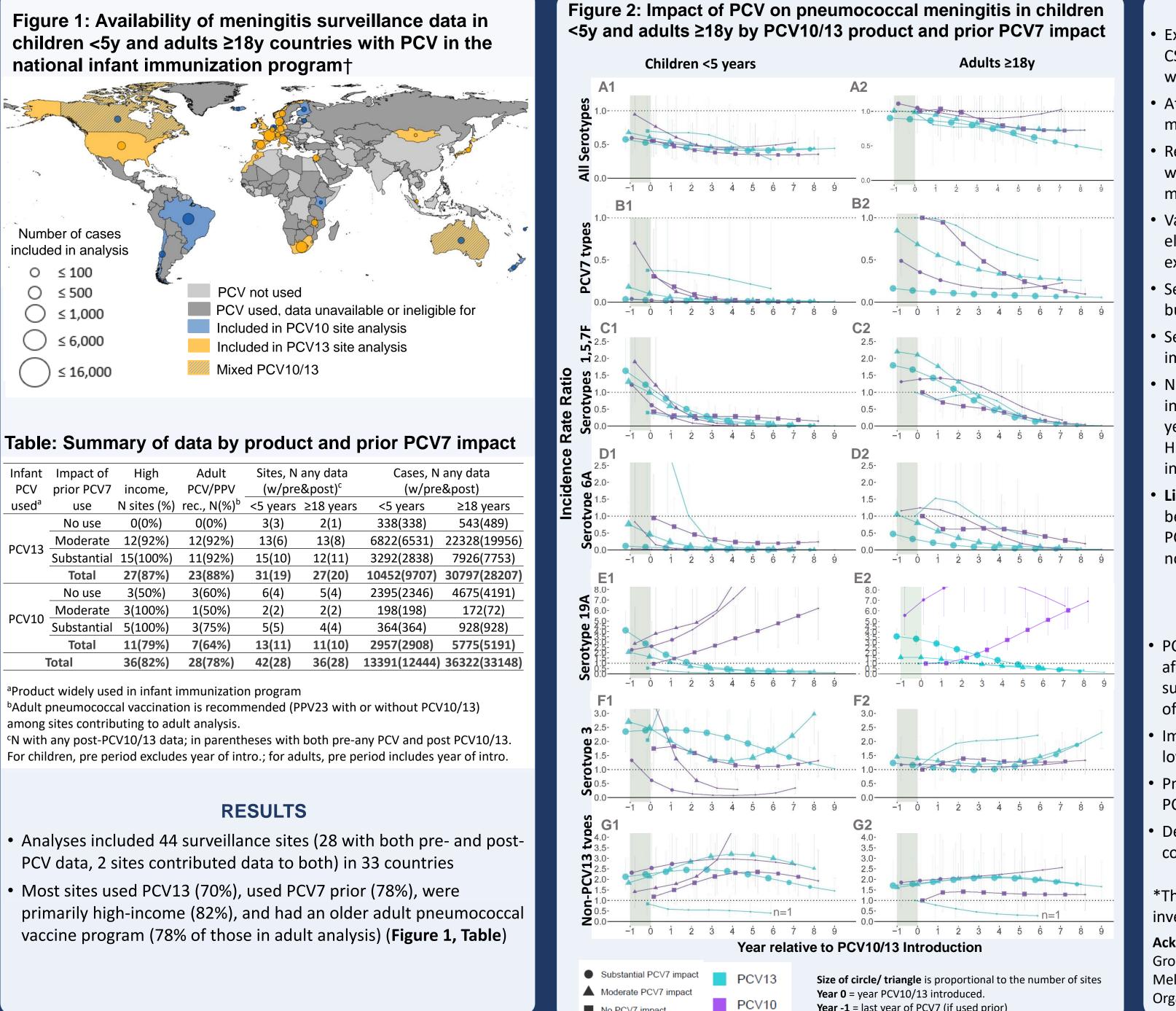
MATERIALS & METHODS

Meningitis = detection of S. pneumoniae in cerebrospinal fluid (CSF)

Eligibility criteria for inclusion in primary analysis:

- Site had CSF-positive meningitis incidence data [2]
- No bias over time detecting cases or affecting incidence rates
- At least 50% of isolates serotyped for serotype-specific analyses
- PCV10 or PCV13 used in national infant immunization program
- At least 50% vaccine uptake in birth cohort

Statistical Analysis


- Estimated site-specific meningitis incidence rate ratios (IRRs) for each year post-PCV10/13 relative to pre-PCV incidence using Bayesian multi-level, mixed effects Poisson regression
- Sites were grouped according to product (PCV10 vs. PCV13) & prior PCV7 impact (none, moderate or substantial)
- Weighted average IRRs were estimated for each product/PCV7 use group using linear mixed-effects regressions using data from sites with both pre- and post-PCV data only, but data from all sites (incl. post-only) contributed to shape of curve

References:

RESEARCH POSTER PRESENTATION TEMPLATE © 2019 www.PosterPresentations.com

- 1. Wahl B, O'Brien KL, Greenbaum A, et al.. Global, regional, and national burden of Streptococcus pneumoniae and Haemophilus influenzae type b in children in the era of conjugate vaccines: updated estimates from 2000-2015. *Lancet Global Health* 2018; 6: e744–e757.
- Deloria Knoll, M.; Bennett, J.C.; et al. Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) Project. Microorganisms 2021, 9, 742. https://doi.org/10.3390/microorganisms9040742

Figure 1: Availability of meningitis surveillance data in national infant immunization program⁺

No PCV7 impact

Infant	Impact of	High	Adult	Sites, N any data		Cases, N any data	
PCV	prior PCV7	income,	PCV/PPV	(w/pre&post) ^c		(w/pre&post)	
used ^a	use	N sites (%)	rec., N(%) ^b	<5 years	≥18 years	<5 years	≥18 years
PCV13	No use	0(0%)	0(0%)	3(3)	2(1)	338(338)	543(489)
	Moderate	12(92%)	12(92%)	13(6)	13(8)	6822(6531)	22328(19956)
	Substantial	15(100%)	11(92%)	15(10)	12(11)	3292(2838)	7926(7753)
	Total	27(87%)	23(88%)	31(19)	27(20)	10452(9707)	30797(28207)
PCV10	No use	3(50%)	3(60%)	6(4)	5(4)	2395(2346)	4675(4191)
	Moderate	3(100%)	1(50%)	2(2)	2(2)	198(198)	172(72)
	Substantial	5(100%)	3(75%)	5(5)	4(4)	364(364)	928(928)
	Total	11(79%)	7(64%)	13(11)	11(10)	2957(2908)	5775(5191)
Total		36(82%)	28(78%)	42(28)	36(28)	13391(12444)	36322(33148)
						· · · · · ·	

Year -1 = last year of PCV7 (if used prior)

INTERNATIONAL **VACCINE ACCESS** CENTER

RESULTS: Figure 2

- Extensive PCV7 use in children substantially (~45%) reduced their CSF-positive pneumococcal meningitis prior to switch to PCV10/13, while indirect effects in adults was lower (~10%) (A1-2, Year -1)
- After PCV10/13 introduction, most declines in children <5y maximized by year 3-5, then stabilized (A1-E1)
- Reduction in all CSF-positive pneumococcal meningitis by year 5 was >50% in children <5y for both products, and ~30% in adults for most sites (A1-2)
- Vaccine-containing types (PCV10: B-C; PCV13: B-E) were virtually eliminated by year 5 for <5y, and took longer for ≥18y, with exception of serotype 3 for PCV13 which did not decline (F1-2)
- Serotype 19A was almost eliminated by PCV13 in both age groups but increased at PCV10 sites (E1-2)
- Serotype 3 was dynamic over the time period with no clear vaccine impact for either product (F1-2)
- Non-PCV13 serotypes (those not covered by either vaccine) increased in both age groups and both products, and peaked by year 5 (except one strata that declined, which had a single high HIV-prevalence site with concurrent non-vaccine interventions, including ART) (G1-2)
- **Limitations:** Data from low-income, high-burden, and meningitisbelt regions were sparse; direct comparisons between PCV10 and PCV13 were constrained due to few PCV10 sites; estimates may not reflect an individual site's experience.

CONCLUSION

- PCVs reduced CSF-positive pneumococcal meningitis by over 50% after substantial use in children <5 years of age, driven by substantial declines in vaccine-type disease, which were partially offset by increases in non-vaccine-type disease
- Impact among adults showed overall net declines in most sites, but lower than for <5 years
- Pneumococcal meningitis was further reduced after switch from PCV7 to PCV10/13 at most sites
- Despite this study being global and the largest ever, nuanced comparisons of rate of decline between products are limited
- *The **PSERENADE Team** includes the Hopkins Core Team & investigators in over 50 surveillance sites and at the WHO.
- Acknowledgements: Sites shared data and, with the Technical Advisory Group, helped to shape methods and interpret results. Funded by the Bill & Melinda Gates Foundation as part of a grant to the World Health Organization.